32. Biosynthetic Production of \([N^2,1,3,7,9-\text{15}N]\)Guanosine and \([1,3,7,9-\text{15}N]\)Inosine and Conversion into \([N^6,1,3,7,9-\text{15}N]\)Adenosine for Structure Elucidation of RNA by Heteronuclear NMR

by Annette C. Niemann\(^1\), Mónica Meyer\(^1\), Thomas Engeloch\(^1\), Oliver Botta\(^1\), Alfons Hadener, and Peter Strazewski\(^1\)

Institut für Organische Chemie der Universität Basel, St. Johannis-Ring 19, CH-4056 Basel

(7. XI. 94)

A procedure was developed for the biosynthetic preparation of \(\text{15}N\)-labelled guanosine and inosine through the action of a mutant \(Bacillus subtilis\) strain. Crude \([N^2,1,3,7,9-\text{15}N]\)guanosine and \([1,3,7,9-\text{15}N]\)inosine were isolated from the culture filtrate by precipitation and anion-exchange chromatography (Scheme 1). No cell lysis and no enzymatic degradation was necessary. The per-isobutyrylated derivatives 1 and 2 were isolated from a complex mixture, purified by virtue of their different lipophilicity, and separated in three steps involving normal- and reversed-phase silica-gel chromatography. One litre of complex nutrient medium yielded 8.44 mmol of guanosine derivative and 2.84 mmol of inosine derivative with high average \(\text{15}N\) enrichment (83.5 and 91.9 atom-%, resp.). \([N^6,1,3,7,9-\text{15}N]\)Adenosine (4) was obtained from 2',3',5'-tri-O-isobutyryl[1,3,7,9-\text{15}N]inosine (1) through the ammonolysis of its 1,2,4-triazolyl derivative with aqueous \(\text{15}NH_3\) (Scheme 2).

Introduction. – The advent of multidimensional heteronuclear \(^1\)H-NMR spectroscopy for the elucidation of the solution structure of large biomolecules [1] [2] led to a number of investigations aiming at the preparation of defined \(\text{15}N\)-labelled RNA fragments [3] [4]. The general approach was a biosynthetic one: Microorganisms grown on minimal media containing \([\text{15}N]Jammonium salts were used to produce labelled RNA. After enzymatic degradation to the nucleosides and enzymic phosphorylation, all four \(\text{15}N\)-labelled ribonucleoside 5'-triphosphates were obtained in 1–100 \(\mu\)mol amounts per litre of culture medium. Those were used as substrates for an enzymic \textit{in vitro} RNA synthesis by T7 RNA polymerase.

Our approach divides the preparation of \(\text{15}N\)-labelled ribonucleosides into a biosynthetic and a synthetic one, with the aim to obtain g-quantities of the nucleosides for their use in both \textit{in vitro} and chemical [U-\text{15}N]RNA synthesis. Here, we describe the preparation of the purine nucleosides \([1,3,7,9-\text{15}N]\)inosine and \([N^2,1,3,7,9-\text{15}N]\)guanosine. They were directly obtained from a conventionally cultivated mutant \(Bacillus subtilis\) strain NA6601 [5]. Under certain growth conditions, these Gram-positive bacteria are capable of releasing large quantities of guanosine (G) and inosine (I) into the growth medium. This greatly simplifies the isolation and purification procedure. Subsequently, \([1,3,7,9-\text{15}N]\)inosine was chemically converted into \([N^6,1,3,7,9-\text{15}N]\)adenosine.

Results and Discussion. – Production, Isolation, and Purification of the Main Metabolites. Optimal aerobic growth of \(B. subtilis\) NA6601 required a medium based on sorbitol and autolysed yeast (SD medium) for precultures and a complex medium based on

glucose and corn steep liquor (FM medium) for the overproduction of nucleosides [6]. In a typical production, aliquots (1 part) of precultures that had been grown at 37° for 24 h were used to inoculate portions (3 parts) of FM medium. These cultures were incubated at 37° on a rotary shaker. The production of inosine and guanosine in the FM culture was quantitatively followed in real time by reversed-phase HPLC; the culture broth was analyzed directly. To obtain large quantities of nucleosides in highly enriched 15N-labelled form, it was necessary to optimize the composition of the FM medium with respect to the concentrations of various N sources while a maximum nucleoside production and a high inosine vs. guanosine ratio had to be maintained.

Two N sources that are readily metabolized by the organism, and that can be added economically in the 15N-labelled form, (NH4)2SO4 and urea, make up for ca. 80% of the total N content of the FM medium in its original composition. The rest is contributed by glutamate (7.4%), corn steep liquor (ca. 6%), ribonucleic acid (2.7%), and N carried over from the preculture in SD medium (4%). The main C source is D-glucose. Phosphorus originates from three sources, commercially available RNA from Torula utilis (44%), corn steep liquor (11%), and P carried over from the preculture (45%).

To reduce the 14N content in the FM medium, we tested whether monosodium L-glutamate could be omitted or replaced by other ingredients. The biosynthetic precursor of the N(1) atom of inosine and guanosine is aspartate which is in biosynthetic equilibrium with glutamate: glutamate + oxaloacetate ⇌ aspartate + 2-oxoglutarate [7]. The addition of either L-glutamic or L-aspartic acid to the FM medium was found to be necessary for an effective overproduction. Although glutamate is biosynthesized from 2-oxoglutarate, the replacement of the former compound by the latter was ineffective. But the substitution of monosodium L-glutamate by small amounts of L-aspartic acid (1/10 of the original molar concentration of L-glutamate) was found to be ideal for both a high yield of nucleosides and an optimal inosine production.

In other test experiments, the requirement to include RNA as an ingredient to the FM medium was checked: the nucleosides accumulated to a much lower extent when RNA was either omitted or added at increased concentrations. Various other details of the fermentation protocol, such as the size of cultures, the extent of aeration, the transfer of inocula, etc., were also subjected to careful optimization. Table 1 shows the contribution of various N sources to the total N content of the optimized nutrient medium during the production of 15N-labelled nucleosides.

Initially and unexpectedly, when unlabelled (NH4)2SO4 was replaced by (15NH4)2SO4 (from 15NH4Cl and H2SO4), the nucleoside production was found to be markedly inhibited. Purification of the 15N-labelled material was, therefore, necessary prior to its use in the fermentations. X-Ray fluorescence of crystalline commercial 15NH4Cl (Cambridge

<table>
<thead>
<tr>
<th>Component</th>
<th>N [%]</th>
<th>Component</th>
<th>N [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15NH4)2SO4</td>
<td>40.5</td>
<td>Corn steep liquor (2.7-4.5% N)</td>
<td>7.1</td>
</tr>
<tr>
<td>(15N)2Urea</td>
<td>43.9</td>
<td>RNA from T. utilis (13.6% N)</td>
<td>3.0</td>
</tr>
<tr>
<td>L-Aspartic acid3)</td>
<td>0.85</td>
<td>Inoculum carried over from preculture3)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

3) Unlabelled.
Isotope Laboratories) revealed a severe contamination by a Br-containing compound (0.1–1% Br). High-temperature GC/MS analysis of CH₂Cl₂ extracts of an aqueous ¹⁵NH₄Cl solution did not reveal any significant organic impurities, suggesting that the Br-containing compound was either inorganic (Br⁻ could be ruled out by anion chromatography), too thermolabile, or not sufficiently volatile for GC. This impurity was eliminated by H₂O-vapour distillation of ¹⁵NH₄ into H₂SO₄, but the inhibition remained. (¹⁵NH₄)₂SO₄ was subsequently purified by passing an aqueous solution over a strongly metal-chelating cation-exchange resin (Chelex 100, Na⁺ form). The metals were washed off the resin distilled 1N HCl. Inductively-coupled-plasma mass spectra partly coupled with optical emission spectroscopy (ICP-MS, ICP-OES) of the HCl solution revealed a 22-fold lower Cu (0.12 ppm) and a 12-fold higher Sr content (7.26 ppm), as compared to a reference HCl solution that was obtained from extracted, distilled, and Chelex-purified unlabelled material (2.76 ppm of Cu and 0.6 ppm of Sr, NH₄Cl from Merck). No increased radioactivity, possibly owing to ⁹⁰Sr, was found in ¹⁵NH₄Cl. ICP-MS and ICP-OES analysis of HCl washings derived from Chelex-purified (¹⁵N)urea (CIL) revealed an approximately two-fold higher Al, B, Ba, Sr, and Zn, and a three-fold higher Pb content (vs. urea from Merck). All other contaminations by heavy or potentially toxic metals were within the range or even lower in comparison to the reference solutions. Thus, an extraction with CH₂Cl₂, a H₂O-vapour distillation into analytical-grade H₂SO₄, and subsequent Chelex purification of (¹⁵NH₄)₂SO₄ and a Chelex purification of (¹⁵N)urea were carried out prior to an optimal nucleoside production.

The entire production of ¹⁵N-labelled G and I was carried out starting from 9.32 g of (¹⁵N)urea (99% ¹⁵N; 300 mmol of ¹⁵N) and 18.92 g of (¹⁵NH₄)₂SO₄ (99% ¹⁵N; 282 mmol of ¹⁵N) in three series in which a total of 45 small FM cultures (20–40 ml each, 1020 ml total) were grown. Substantial production of the nucleosides began only after 20 h, followed by an exponential growth phase until, after 78 to 80 h, the amount of I and G began to drop owing to catabolic degradation. The pH rose from 6.8 to 8.1–8.5 during the growth period. After 80 h, the culture broths were combined into two lots. It was possible to store these at −30° without loss of labelled nucleosides. Later, the lots were boiled separately and filtered hot over Celite. G crystallized preferentially in the filtrate. After several precipitations, the last mother liquor was set to pH 11, and residual ¹⁵NH₄ was collected by rapid distillation into 2N HCl. Thus, 5.85 g of ¹⁵NH₄Cl (96 atom-% ¹⁵N; 103 mmol of ¹⁵N, 18%) could be regenerated. The residual solid was separated on an anion-exchange resin to furnish I-enriched fractions. All I- and G-containing fractions were pooled. The yield at this stage was 2.2 g of I and 7.1 g of G, as shown by HPLC analysis of the culture filtrates.

Subsequently, the crude solids and oils were treated with an excess of isobutyryl chloride in pyridine. A mixture of crude 2',3',5'-tri-O-isobutyryl[1,3,7,9-¹⁵N]inosine (1) and N²-isobutyryl-2',3',5'-tri-O-isobutyryl[¹⁵N²,1,3,7,9-¹⁵N]guanosine (2) was obtained together with mostly non-nucleoside impurities (TLC). The purification and separation of 1 and 2 was accomplished in three chromatographic steps using both normal-phase and reversed-phase silica gels (Scheme 1). First, a flash chromatography (FC) over normal-phase SiO₂ using a step gradient of MeOH in CH₂Cl₂, separated in four runs most of the non-nucleoside from the nucleosodic compounds. Four pooled FC fractions X, A, B, and C resulted. X contained 2 together with a hitherto unidentified compound, A contained mainly 2, B a mixture 2/I, and C mainly I largely free of 2. In a second step, each of these
fractions was submitted to preparative UV-detected reversed-phase medium-pressure liquid chromatography (MPLC) using a time-programmed H₂O/MeOH gradient. The gradient was optimized so as to efficiently separate 1 from 2. Because of their low solubility in the initial eluant (H₂O/MeOH 1:1), the FC fractions were applied as impregnates onto an MPLC precolumn. A number of reversed-phase MPLIC runs were needed for the complete separation of all 1 and 2. According to reversed-phase HPLC analysis, the original MPLC fractions were pooled into two main fractions, the I and the G fraction (4.0 and 5.6 g, resp.). Besides, 12 other reversed-phase MPLIC fractions were kept for an elementary and ¹H-NMR analysis, to determine whether other useful ¹⁵N-containing compounds had been isolated (e.g. [¹,³,⁷,⁹-¹⁵N]hypoxanthine). Finally, the I and G fractions were each purified in a last isocratic normal-phase MPLC step resulting in 5.04 g

Scheme 1. Workup and Purification of the Biosynthetic Production of ¹⁵N-Labelled Inosine and Guanosine
of 2 and 1.44 g of 1 (36 and 37%, resp., with respect to the HPLC-monitored contents in the culture broth). The 'A$_{299}$ purity' of both compounds was determined by HPLC to be 87–95% for 1 and 97–100% for 2. The actual purities were > 95% as determined by 1H-NMR.

Spectroscopic Characterization. The FAB$^+$-MS of 1 reveals a collection of signals at m/z 479–485. The intensity of m/z 483 is 20% of the base peak (triisobutyrylribose cation at m/z 343). These signals represent a mixture of isotopomers with different degrees of protonation (Table 2). The degree of protonation is determined by measuring unlabelled 1 under the same conditions. The same distribution of $\left[M - H \right]^+$, M^+, $\left[M + H \right]^+$, $\left[M + 2 H \right]^+$, and $\left[M + 3 H \right]^+$ is carried over to each isotopomer. Seven significant peaks and five degrees of protonation are expressed as a system of 7 equations, 5 constants, and 5 unknowns A to E representing the fraction of each of the 5 possible isotopomers (15N$_4$)- to (15N$_4$)-1 contained in the mixture. The over-determined equation system is solved by a weighted linear regression analysis according to Egn. 1. \hat{x} is the solution vector, M is the 7×5 matrix expressing the degrees of protonation, \hat{c} contains the mean relative intensities ϕ_i of mass peaks ($i = 1–7$) and G_y is the inverted variance matrix $C_y(\sigma_i)$. The values for ϕ_i and σ_i are taken from Table 2; C_y is calculated according to Egn. 2.

$$\hat{x} = \begin{bmatrix} A \\ \vdots \\ E \end{bmatrix} = (M^T \times G_y \times M)^{-1} \times M^T \times G_y \times \hat{c}$$

$$\hat{c} = \begin{bmatrix} \phi_1 \\ \vdots \\ \phi_7 \end{bmatrix}$$

$$C_y = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{1}{\sigma_i^2} \end{bmatrix}$$

$$= G_y^{-1}$$

\hat{c} is calculated according to Egn. 2.

<table>
<thead>
<tr>
<th>m/z</th>
<th>Relative intensity ϕ_i [%]</th>
<th>Standard deviation/rel. int. σ_i</th>
<th>$\left[M - H \right]^+$ [1.43±0.18 [%]]</th>
<th>M^+ [5.70±0.26 [%]]</th>
<th>$\left[M + H \right]^+$ [71.4±0.6 [%]]</th>
<th>$\left[M + 2 H \right]^+$ [18.6±0.4 [%]]</th>
<th>$\left[M + 3 H \right]^+$ [3.02±0.13 [%]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>0.35</td>
<td>0.1595</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>1.04</td>
<td>0.1546</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>4.75</td>
<td>0.0568</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>20.3</td>
<td>0.0099</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>57.2</td>
<td>0.0087</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>14.0</td>
<td>0.0214</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>2.38</td>
<td>0.0588</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

a) From 10 measurements.
b) Degree of protonation from FAB$^+$-MS of unlabelled I$_{ib^3}$, mean value and standard deviations from 9 measurements.
Thus, biosynthetic inosine is composed of 73.87% of \((^{15}\text{N}_1)\)-, 21.64% of \((^{14}\text{N}_1,^{14}\text{N}_1)\)-, 3.26% of \((^{15}\text{N}_2,^{14}\text{N}_2)\)-, 0.66% of \((^{14}\text{N}_1,^{14}\text{N}_2)\)-, and 0.37% of \((^{14}\text{N}_1)\)-isotopomers, resulting in an average \(^{15}\text{N}\) content of 91.9%. During the productive phase, apparently no significant catabolism of RNA nucleobases or other exogeneous \(^{14}\text{N}\)-containing compounds produced reusable \(^{14}\text{NH}_3^+\) cations, or else the content of the \((^{14}\text{N}_2)\)-isotopomer would have been higher. Nevertheless, the quite high content of \((^{15}\text{N}_1,^{14}\text{N}_1)\)inosine indicates that added unlabelled L-aspartic acid, the direct biosynthetic precursor of the N(1) atom of both metabolites, was efficiently incorporated.

The FAB'-MS of 2 reveals two collections of signals at \(m/z\) 221–229 and 563–571. The intensity of \(m/z\) 227 and 569 is 23 and 53%, respectively, with respect to the base peak (triisobutyrylribose cation at \(m/z\) 343). These signals represent a mixture of the isotopomeric \(N^2\)-isobutyrylguaanine and molecular ions, respectively, with different degrees of protonation. The same analysis as above (Eqsns. 1 and 2, except \(i = 1–9\)) is carried out using the signals from the molecule ions, since their intensities are higher and the standard deviations correspondingly lower. A control using the \(N^2\)-isobutyrylguaanine intensities shows no significant deviations. The over-determined equation system consists of 9 significant relative peak intensities and 5 degrees of protonation resulting in a system of 9 equations, 5 constants, and 6 unknowns \(A–F\), representing the fraction of the 6 possible isotopomers \((^{14}\text{N}_1)\)- to \((^{15}\text{N}_2)\)-2 in the mixture (Table 3).

<table>
<thead>
<tr>
<th>(m/z)</th>
<th>Relative intensity (\phi_i) [%]</th>
<th>Standard deviation/rel. int. (\sigma_i)</th>
<th>([M - H]^+) (\phi^a)</th>
<th>([M]^+) (\phi^b)</th>
<th>([M + H]^+) (\phi^c)</th>
<th>([M + 2H]^+) (\phi^d)</th>
<th>([M + 3H]^+) (\phi^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>563</td>
<td>0.67</td>
<td>0.0817</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>4.66</td>
<td>0.0314</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>3.13</td>
<td>0.0254</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>566</td>
<td>1.76</td>
<td>0.0495</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>567</td>
<td>7.36</td>
<td>0.0229</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>568</td>
<td>25.32</td>
<td>0.0155</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>43.24</td>
<td>0.0068</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>11.97</td>
<td>0.0186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571</td>
<td>1.88</td>
<td>0.0379</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) From 10 measurements.
\(^b\) Degree of protonation from FAB'-MS of unlabelled \(\text{Ib}^2\text{Gib}^2,3,5\)-, mean value and standard deviation from 9 measurements.

Thus, biosynthetic guanosine is composed of 58.75% of \((^{14}\text{N}_1)\)-, 26.75% of \((^{14}\text{N}_1,^{14}\text{N}_1)\)-, 4.48% of \((^{14}\text{N}_2,^{15}\text{N}_1)\)-, 0.31% of \((^{14}\text{N}_1,^{15}\text{N}_2)\)-, 2.8% of \((^{14}\text{N}_1,^{14}\text{N}_2)\)-, and 6.91% of \((^{14}\text{N}_2)\)-isotopomers, resulting in an average \(^{15}\text{N}\) content of 83.5%. The relatively high content of unlabelled guanosine indicates that, during the productive phase, exogenous unlabelled RNA was degraded to the nucleosides by extracellular RNAses. The resulting phosphate was used as a source of P, and unlabelled G was co-purified with G of biosynthetic origin. After substracting 7% of unlabelled, ‘degraded’ G from the mixture of isotopomers, an average 90.5% of \(^{15}\text{N}\) enrichment in the biosynthesized G results.
The 1H-NMR spectrum of $\mathbf{1}$ in CDCl$_3$ (Fig. 1a) shows all signals and coupling constants as expected from unlabelled material. In addition, a coupling in both $H-C(1')$ and $H-C(2')$ resonances to N(9) is visible ($2J(1',N(9)) \approx 0.5$ and $2J(2',N(9)) = 1.7$ Hz, resp.). According to steady-state NOE experiments3), the resonance at 8.0 ppm is assigned to $H-C(8)$. Its dd multiplicity originates from two 1H couplings: $2J(8,N(9)) = 11.7$ and $2J(8,N(9)) = 8.3$ Hz. The $H-C(2)$ signal at 8.2 ppm splits into two resonances of unequal intensities. Both show 1H,H couplings; the larger one is a dd with $2J(2,N(3)) = 13.2$ and $2J(2,N(1)) = 7.5$ Hz and belongs to the main isotopomer. The smaller one is a d with $2J(2,N(3)) = 13.2$ Hz. The third isotopomer ($2J(2,1) = 7.5$ Hz), if present, hides underneath the main resonance. The 0.23-Hz difference in Larmor frequency between the visible $H-C(2)$ resonances demonstrates a negative (upfield) 92-ppb 1H isotope effect on $H-C(2)$. No third s resonance 0.23 Hz downfield of the minor isotopomer is found, in agreement with the low abundancy of unlabelled $\mathbf{1}$ (0.37% according to MS). The exchangeable $H-N(1)$ resonates at 12.9 ppm as a broad 80-Hz d

In the 1H-NMR spectrum of $\mathbf{2}$ in CDCl$_3$ (Fig. 1b), again various 15N,1H-couplings are visible (e.g. $2J(1',N(9)) = 1.2$, $2J(2',N(9)) = 1.7$, $2J(2'',N-C(2)) = 0.8$ Hz). The following resonances allow to directly determine the 15N enrichments of most of the N-atoms of $\mathbf{2}$. The N-bound protons $H-N-C(2)$ and $H-N(1)$ resonate at 9.03 and 12.03 ppm, respectively. The coupling constants are $2J(N,N-C(2)) = 92.5$ and $2J(N,N(1)) = 91.2$ Hz, respectively. The multiplicity of the $H-N-C(2)$ signal is dd; the second coupling is interpreted as a long-range coupling to N(3), $2J(HN-C(2),N(3)) = 2.1$ Hz, since no proton irradiation has any influence on this resonance. 15N Contents of 83% at N(1) and 93% at N-C(2) are calculated from the integrals of the residual s.

The $H-C(8)$ resonance of $\mathbf{2}$ at 7.7 ppm consists of four resonances originating from four isotopomers (Fig. 2, bottom). The fully labelled main isotopomer splits its proton resonance into a ddk multiplicity without significant roof effect ('c' isotopomer in Fig. 2, top). $H-C(8)$ couples here with N(7), N(9), and N-C(2) (sic!). The weakest coupling can not be influenced by proton irradiations, is absent in $\mathbf{1}$, and therefore, originates from a very-long-range 15N,1H coupling over six bonds: $6J(8,N-C(2)) = 0.8$ Hz. The other two constants are $2J(8,N(7)) = 11.5$ Hz and $2J(8,N(9)) = 8.6$ Hz. The other clearly

3) Conclusive NOE-derived assignments could only be obtained from unlabelled material: Irradiation at the imino resonance $H-^{15}$N(1) at 13.1 ppm produces a positive 12.5% enhancement at 8.3 ppm and a negative 1.3% enhancement at 8.02 ppm. Upon irradiations at 8.02 or 8.3 ppm, no NOE is observed at 13.1 ppm, owing to quadrupolar relaxation of the 14N nucleus. However, when labelled $\mathbf{2}$ is analyzed, strong negative NOE's result, as expected from the negative gyromagnetic ratio of the 14N nucleus ($\gamma(15N) = -2.7126 \times 10^7$ vs. $\gamma(14N) = 1.9338 \times 10^7$ rad/(T.s)), but with opposite intensities: Irradiation at the $H-^{15}$N(1) resonance at 12.9 ppm leads to 1.0% enhancement at 8.2 and -11.2% enhancement at 8.0 ppm! Conversely, irradiation at 8.2 ppm leads to -1.3% enhancement at 12.9 ppm, whereas irradiation at 8.0 ppm produces -6.0% enhancement at 12.9 ppm. The strong negative NOE between the more distant nuclei 1^H-^{15}N(1) and 1^H-^{15}N-C(8) must originate from the indirect effect of 15N(1) being more or less in-line between $H-N(1)$ and $H-C(8)$. In contrast, the angle $H-N(1)-^{15}$N-HC(2) is unfavorable (ca. 90°)8). This indirect effect must also have occurred in the unlabelled material, albeit to a smaller extent, since, at the extreme narrowing limit (as this molecule is), direct enhancements are positive unless there is a strong scalar coupling between the protons (which is not the case). The small positive enhancement of 1% at $H-C(2)$ upon irradiation at $H-^{15}$N(1), as compared to $+12.5\%$ in the unlabelled material, and the small and negative enhancement of -1.3% at $H-^{15}$N(1) upon irradiation at $H-C(2)$ show that a N(1)-derived indirect effect occurs even in the unfavorable geometry.
visible isotopomer resonance is a dd with $J(8, N(9)) = 8.6$ and $J(8, N-C(2)) = 0.8$ Hz (upper 'b' isotopomer in Fig. 2, top). Underneath (shoulder), another dd resonance ($J(8, N(7)) \approx 11.5$ Hz) reveals the presence of a third isotopomer (lower 'b' isotopomer in Fig. 2, top). The discrimination of the latter couplings is possible after inspection of the 15N-NMR spectra (vide infra). Finally, a s appears slightly downfield of the centre showing the presence of unlabelled material ('a' isotopomer in Fig. 2, top). The absence of the 0.8-Hz coupling in this resonance lends further support to the apparent six-bond 15N-H coupling and confirms that this isotopomer is fully unlabelled. The three kinds of
\[^2J(8, N(7)) = 11.5 \text{ Hz} \]
\[^2J(8, N(9)) = 8.6 \text{ Hz} \]
\[^{6}J(8, N-C(2)) = 0.8 \text{ Hz} \]

\[\nu_c = 7.6982 \text{ ppm} \]
\[(3078.86 \text{ Hz}) \]
\[\nu_d = 7.6989 \text{ ppm} \]
\[(3079.15 \text{ Hz}) \]
\[\nu_e = 7.6996 \text{ ppm} \]
\[(3079.42 \text{ Hz}) \]

Fig. 2. Close-up of the \(H-C(8)^1H\)-NMR signal of 2.
isotopomers 'c', 'b', and 'a', one carrying two 15N atoms in positions 7 and 9, two carrying only one 15N, and the unlabelled one, resonate at significantly different Larmor frequencies. The 15N isotope effect is 112 ppb (0.28 Hz) per 15N atom for this proton.

The integral ratio between the leftmost d's of the 'c' and 'b' isotopomers is 68:32. The ratio between both 'b' isotopomers is estimated to be approximately 15N(9)/15N(7) 2:1 to 3:1. The 'b' and 'c' isotopomers together correspond to 93% 15N, leaving 7% to the unlabelled 'a' isotopomer (MS). The 15N content multiplied by the ratio yields 15N(9), 15N(7)/15N(9), 14N(7)/14N(9), 15N(7)/14N(9), 14N(7) ca. 63:22:8:7. Hence, the 15N enrichment of all N-atoms can be derived from the combined 1H-NMR and MS analysis (the enrichment at N(3) can be calculated from the average 15N content of 83.5%). Since inosine is the biosynthetic precursor of guanosine and has an average 15N content of 91.9%, the corresponding 15N enrichments can also be calculated.

Table 4 summarizes the results.

<table>
<thead>
<tr>
<th>Order of biosynthesis</th>
<th>Atom</th>
<th>Approx. 15N enrichment</th>
<th>Biosynthetic precursor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N(9)</td>
<td>85</td>
<td>Gln (→ Glu)</td>
</tr>
<tr>
<td>2</td>
<td>N(7)</td>
<td>71</td>
<td>Gly</td>
</tr>
<tr>
<td>3</td>
<td>N(3)</td>
<td>85.5</td>
<td>Gln (→ Glu)</td>
</tr>
<tr>
<td>4</td>
<td>N(1)</td>
<td>83</td>
<td>Asp (→ fumarate)</td>
</tr>
<tr>
<td>5</td>
<td>N2</td>
<td>93</td>
<td>Gln (→ Glu)</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td>83.5</td>
<td>91.9</td>
</tr>
</tbody>
</table>

The specific enrichments are in accordance with the biosynthetic pathway to inosine and guanosine. The first N-atom to be introduced is N(9) and stems from the side chain of glutamine. It is attached to α-ν-5-phosphoribofuranosyl 1-pyrophosphate to form β-amino-ν-ribofuranosyl 5'-phosphate. The imidazole ring of purine nucleosides is built up through the condensation of glycine to N(9), N(7)-formylation involving $^N_{10}$-formyltetrahydrofolate ($^N_{10}$-formyl-THF), transfer of a glutamine side chain N-atom onto the resulting C(4)-carbonyl group, and subsequent eliminative cyclization (C(8)–N(9)). Thus, the second N-atom is N(7) and the third N(3). The resulting 5-aminimidazole ribonucleotide is carboxylated at C(5) and condensed with aspartate. Only the N-atom of aspartate remains in the purine as N(1), the fourth N-atom (the rest of aspartate eliminates as fumarate). Subsequent N(3)-formylation and eliminative cyclization yields inosinate, the common biosynthetic precursor of guanylate and adenylylate. C(2) is oxidized to form xanthylate which is transaminated to guanylate through the introduction of N–C(2), derived, one again, from the side chain of glutamine.
According to Table 4, most of the glutamine had to be biosynthesized during culture growth, since the enrichment of N(9) in inosine is already quite high. As expected, the enrichment of N(3) is of the same order. The enrichment of N–C(2) of guanosine is lower only due to the 7-% fraction of fully unlabelled guanosine of exogeneous origin. However, unlabelled glycine must have been quite abundant in the culture medium, since only 80.5 % of N(7) originates from biosynthesized glycine. In fact, there was even more unlabelled glycine present than added unlabelled aspartate, N(1) being almost as enriched as the glutamine-derived N-atoms (94 %). Finally, at the stage where xanthylate is transamminated to guanylate, only biosynthesized glutamine was present in the culture medium.

Fig. 3. 1H-Broad-band-decoupled 13C-NMR spectra (101 MHz, CDC$_3$) of a) 1 and b) 2. δ rel. to SiMe$_4$ (= 0 ppm).
To learn more about 13C, 15N couplings, 13C-NMR spectra of 1 and 2 were measured (Fig. 3). The $\delta^{(13)}$C agreement well with published data, the resonance splittings due to 15N-couplings, however, are sometimes rather difficult to explain. Especially the known facts that long-range coupling constants may be larger than short-range coupling constants and that some couplings simply do not occur [9] render the assignments of couplings somewhat intuitive. Nevertheless, some conclusive information can be elucidated. In particular, the C(1') resonances do couple with N(9), whereas C(2') resonances do not any more. The constants are the same in both compounds: $^1J(N(9),C(1')) = 12$ Hz. The non-labelled isotopomers appear in the C(1') signals of both compounds as central, slightly downfield-shifted s's. The 15N isotope effect on C(1') is -172 ppb in 1 and -131 ppb in 2. The well-resolved C(1') signals of 2 show an intensity ratio 15N(9)/14N(9) of 85:15, in excellent agreement with the value derived from 1H-NMR. The other measurable 15N isotope effect is -66 ppb on C(1") of 2. Some of the other 15N,13C-couplings in the bases are less complex, others, however, are more complex than expected. All visible 15N,13C-couplings, together with the sometimes tentative assignments, are described in the Exper. Part.

Finally, 1H-coupled and broad-band-decoupled 15N-NMR spectra of 1 and 2 in CDCl$_3$ were measured (Fig. 4). All $\delta^{(15)}$N and signal intensities are consistent with literature data [10]. The spectrum of 1 shows four signals: N(9) at -210.6, N(1) as a broad m at -208.4, N(3) at -163.9, and N(7) at -133.3 ppm (Fig. 4a). The resonances are assigned according to selective 1H irradiations. All 1H,15N- and 15N,15N couplings are listed in the Exper. Part. Most importantly, the couplings between H-$C(8)$ and N(9) (8.2 Hz), N(7) (11.6 Hz) and between H-$C(2)$ and N(3) (13.2 Hz) precisely agree with the couplings and assignments derived from the 1H-NMR data.

The spectrum of 2 shows five resonances with expected chemical shifts and signal intensities: N-$C(2)$ at -246.7, N(1) at -228.2, N(9) at -213.2, N(3) at -200.0, and N(7) at -132.8 ppm (Fig. 4b). All 1H,15N-coupling constants derived from the 1H-NMR spectrum agree well with the 15N-NMR data (see Exper. Part). The small long-range couplings between H-$C(1')$/H-$C(2')$ and N(9) (1.2 and 1.7 Hz, resp.) can be observed in fully 1H-coupled spectra, but cannot be quantified due to additional 15N,15N couplings. The largest 15N,15N-coupling constant of 16.8 Hz occurs between N-$C(2)$ and N(1). N-$C(2)$ additionally couples with N(3) (6.9 Hz), N(3), in turn, couples with N(9) (3.5 Hz). Both N(9) and N(3) resonances show an additional splitting of 1.5 Hz which can not be found in any other signal and cannot be influenced by proton irradiations. In contrast to N(7) of 1 ($^2J(N(7),N(9)) = 2$ Hz), N(7) of 2 appears as a s apparently having a zero-coupling with N(9). Note that, in order to reliably determine 15N,15N-coupling constants, the frequency of the 1H decoupler has to correspond precisely to the proton frequency of the proton to be decoupled, despite of the 'super-efficiently' broadening WALTZ puls sequence.

A small part of compound 2 was deprotected with ammonia to give $[N^2,1,3,7,9$-15N]-guanosine. The 1H-broad-band-decoupled 15N-NMR spectrum in phosphate-buffered water, pH 7.0, shows five resonances (chemical shifts relative to internal 15NH$_2$Cl): N-$C(2)$ at 51.7, N(1) at 127.2, N(3) at 145.2, N(9) at 147.9, and N(7) at 214.95 ppm. In addition, preliminary experiments were carried out with unlabelled ib2Gib$_3$,3,5, in order to synthesize O6,17O-guanosine. Thus, ib2Gib$_3$,3,5 was converted into N2-isobutyryl-2',3',5'-tri-O-isobutyryl-O5,6-triisopropylphenylsulfonyl)guanosine (ib2tps8Gib$_3$,3,5).
In the presence of Me₂N and a strong base, the sulfonate was hydrolyzed with labelled water. Subsequent deprotection with ammonia furnished [O⁶,¹⁷O]guanosine (10 atom-% ¹⁷O). The ¹⁷O-NMR spectrum of [O⁶,¹⁷O]guanosine in buffered water at 45⁰ shows a signal at 245.3 ppm with a half-intensity-width of 725 Hz (chemical shift relative to external 1,4-dioxane). Both heteronuclear NMR spectra will serve as a reference for ¹⁵N- and ¹⁷O-labelled RNA.

[N⁶,¹,³,⁷,⁹-¹⁵N]Adenosine. The conversion of 1 into [N⁶,¹,³,⁷,⁹-¹⁵N]adenosine involved two steps, activation of the base carbonyl group through the introduction of a leaving group and substitution with labelled ammonia. The introduction of the 2,4,5-tri-isopropylphenylsulfonyl (tps) group into 1 under the same conditions as above furnished a 1:1 mixture of two isomers. The ¹H-NMR spectrum of the purified mixture showed that both O⁶ and N(1) atoms of 1 reacted unspecifically with the reagent. In addition, the
reaction of similar O-sulfonate derivatives with small nucleophiles such as ammonia or water can be unselective with respect to the attack at the S- vs. the C-centre (unpublished results).

Previously, 3-nitro-1,2,4-triazole was shown to be a useful leaving group when bound to C(4) of a thymidine derivative; diphenyl phosphorochloridate was used as a condensing reagent [12]. However, when 1 was submitted to these reaction conditions, the corresponding (intermediate) O6-(diphenyl-phosphate) derivative was too stable to be substituted either by triethylammonium 3-nitro-1,2,4-triazolide or ammonia. The nitrotriazolyl derivative of 1 did form upon the action of phosphoryltris(3-nitro-1H-1,2,4-triazole), albeit in low yields.

The best way to activate 1 was to use phosphoryl-tris(1,2,4-triazole) [13]. A 6:1 mixture of the stable, isomeric compounds 3a/b (Scheme 2) was obtained in 80% yield (not optimized). The 1H-NMR spectrum of the purified product showed that the major isomer was the nonsymmetrical triazolyl derivative 3a. Ammonolysis of the mixture with 20% aqueous 15NH3 solution in biphasic H2O/tetrahydrofuran furnished 4 in 90% yield. No trace of inosine owing to a competing hydrolysis of 3a/b was found (TLC, reversed-phase MPLC).

Scheme 2. Synthesis of [N°,I,3,7,9, 15N]Adenosine

The FAB+-MS of 4 shows the expected protonated molecular- and base-ion signals at m/z 273 and 141, respectively. The 1H-NMR spectrum in CD3OD exhibits all expected resonances. The H-C(2') resonance, as opposed to the H-C(1') resonance, shows an unusually high long-range coupling with N(9) (J(1',N(9)) = 4.6 Hz, J(2',N(0)) = 1.4 Hz). In contrast to the H-C(2) resonance of 1 (dd), J(N(1),H-C(2)) of 4 is identical to J(N(3),H-C(2)) producing a r of 14.8 Hz at 8.18 ppm. The minor (15N(3),15N(1))-isotopomer shows as a small 14.8 Hz d. H-C(8) resonates at 8.30 ppm with similar 15N,1H-coupling constants as in 1 (J(8,N(9)) = 8.0, J(6,N(7)) = 11.3). The 1H-broadband-decoupled 15N-NMR spectrum of 4 in phosphate-buffered water, pH 7.0, exhibits five resonances at the expected frequencies (chemical shifts relative to internal 15NH3Cl): N-C(6) at 57.2, N(9) at 148.2, N(3) at 197.7, N(1) at 206.6, and N(7) at 210.8 ppm.

Conclusion. – The biosynthetic method developed by Pardi and coworkers produced ca. 80-100 μmol of each mononucleotide per litre culture medium (from E. coli RNA) [3], the method by Williamson and coworkers ca. 1 μmol of each mononucleotide (from Methylphilus methylotrophus RNA) [4]. The aim in these studies was to introduce 13C isotopes into the mononucleotides as well, by feeding E. coli with [U-13C]glucose and M. methylotrophus with less expensive 13CH3OH. In addition, one litre contained 0.68 and 0.78 g of (15NH4)2SO4, respectively.

The presented approach necessitated ca. 9 g of (13N2)urea and 19 g of (15NH4)2SO4 per litre. From the residual culture broth, 5.85 g of 15NH4Cl, corresponding to ca. 36% of added 15NH4+ ions or 18% of the total amount of 15N, could be regenerated by H2O-vapour distillation. In terms of yield per consumed equivalent 15N, Pardi and coworkers
obtained 0.87% of AMP and 1.07% of GMP, Williamson and coworkers 0.058% of AMP and 0.085% of GMP, and 1.68% of inosine and 5.14% of guanosine (as determined by HPLC). Hence, E. coli and B. subtilis are comparably efficient in incorporating N into nucleobases, while M. methylotrophus lags behind by a factor of more than 10.

A guanosine- and inosine-overproducing strain has the advantage of a rather simple isolation and purification procedure, because the metabolites are being released into the culture medium. The method could be up-scaled even further to produce multigramme quantities of 15N-labelled purine nucleosides, be it for in vitro transcription or chemical RNA synthesis.

We thank Dr. Ken-ichiro Miyagawa, R&D Division, Takeda Chemical Industries Ltd., Osaka, Japan, for the generous donation of a lyophilized sample of Bacillus subtilis NA6601. We are also indebted to Prof. Willem Stern, Mineralogisch-Petrographisches Institut, Basel, for carrying out X-ray fluorescence measurements, to Prof. Hans Seiler, Institut für Anorganische Chemie, Basel, for the anion chromatographical analysis, to Dr. Christopher Hohl, Kantonales Laboratorium, Basel, for the high-temperature GC/MS analysis, and to Dr. Jiri Pavel, Elemente-Analytik, Ciba, Basel, for the ICP-MS and ICP-OES measurements. The financial support from the Swiss National Science Foundation is gratefully acknowledged.

Experimental Part

General. Pyridine was refluxed (12 h) and distilled over CaH2. (15N)Urea, 15NH4Cl, and Mn15NO3 (99% 15N) were purchased from Cambridge Isotope Laboratories. Thin-layer chromatography (TLC): Silica gel 60 F254 (Merck); detection under UV light, I2, and by dil. methanolic H2SO4 followed by 2% (w/v) ethanolic naphthoresorcinol and heating. Column chromatography (CC) and flash chromatography (FC): silica gel 60, 63–200 μm and 40–63 μm, resp. (Merck); for large scale FC, silica gel C 360, 35–70 μm (Uetikon). Medium-pressure liquid chromatography (MPLC, max. 40 bar; Büchi), programmed low-pressure gradient mixing, UV detection with prep. flow-cell and variable wavelength (Kontron); reversed-phase column (Büchi): 46 × 3.6 cm i.d. containing 250 g of LiChroprep® RP-18 (Merck), 15–25 μm (packed as toluene suspension); normal-phase column (Büchi): 46 × 7.0 cm i.d. containing 1 kg of LiChroprep® Si 60, 15–25 μm (packed as toluene suspension). High-performance liquid chromatography (HPLC): Shimadzu IC-7A, high-pressure gradient mixing, column oven, UV detection at variable wavelength (UVikon 722 LC spectrophotometer, Kontron), digital peak integration (HP 3380 A, Hewlett-Packard); anal. HPLC: LiChrosorb® RP-18, 5 μm, 50 A, 250 × 4 mm i.d. (Merck); semi-prep. HPLC: ODS II, 5 μm, 50 A (Spherisorb), 250 × 16 mm i.d. (Knauer). Anion-exchange chromatography: Amberlite® CG-400 100–400 mesh, Cl− form (Fluka). Cation-exchange chromatography: Chelex 100®, 200–400 mesh, Na+ form (Biorad). M.p. (corrected): Kofler block. NMR Spectra: Varian-Gemini-300 and Varian-VXR-400; δ(H), δ(C), δ(N), and δ(O) in ppm rel. to internal or external standards, as indicated; scalar coupling constant J in Hz.

15N-NMR Spectra: 10 mm o.d. sample tube; spectral width 25 kHz, acquisition time 640 ms, pulse width 90° (21.0 μs), pre-acquisition delay 5.0 s, 1H-broadband decoupling with WALTZ sequence; double-precision 65356 B-Fourier transformation with zero K filtering, no line broadening. 15O-NMR Spectra: 10 mm o.d. sample tube; spectral width 50 kHz, acquisition time 20 ms, pulse width 90° (45.0 μs), no pre-acquisition delay, no 1H decoupling; no 2H lock; double-precision 65356 B-Fourier transformation with zero K filtering, line broadening 100 Hz (half-intensity signal width is given after subtraction of the line broadening). MS VG 70-250; fast-atom bombardement (FAB, Xe), matrix nitrobenzyl alcohol (NBA) or glycerine (glyc); mass peaks in m/z (rel. intensity in %; FAB intensities after subtraction of the matrix spectrum).

Purification of 15NH4Cl and Conversion into Pure (15NH4)2SO4. An aq. soln. of (15NH4)2SO4 (20.05 g, 0.37 mol) was extracted with CH2Cl2 (3 × 50 ml). The combined org. extracts were washed with H2O (50 ml). The combined aq. solns. were concentrated in vacuo to saturation (ca. 50 ml), transferred into a Parnas-Wagner H2O-vapour distillation apparatus (ca. 100-ml volume) [14], and treated with NaOH (30 g, 0.75 mol) in H2O (25 ml). During heating and distilling, the resulting 15NH4OH soln. was captured in a vessel containing H2SO4 (8.3 ml, 0.3 mol; ca. 80% of the amount needed) in H2O (200 ml). During the distillation, the pH of the stirred (15NH4)2SO4 soln. was continuously measured and kept below 6.5 by addition of 2N H2SO4. The final pH was 5.2. The distillation was continued for further 10 min (constant pH). The (15NH4)2SO4 soln. was lyophilized overnight.
to yield 25.32 g (103%) of (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))SO\(_{4}\). A 1 N soln. thereof was passed over a column (\(\phi \approx 3 \text{ cm}, h \approx 5 \text{ cm}\)) filled with pretreated Chelex-100 (15 g, flow rate 20 ml min\(^{-1}\)). The resin was washed with H\(_2\)O (200 ml). After lyophilization overnight, (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))SO\(_{4}\) (25.72 g, 104%), free of heavy metals, was obtained (4% Na\(_2\)SO\(_4\)). The resin was regenerated with 2 column volumes (\(h 5 \text{ cm}\)) of 1 N HCl (prepared from distilled 6N HCl), 2 volumes of 1 N NaOH and 5 volumes of H\(_2\)O. The HCl soln. was concentrated to 100 ml and used for MS analyses.

Purification of (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))urea. A 0.15 M aq. (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))urea soln. was passed over Chelex-100 (30 g). The resin was washed with 1 l of H\(_2\)O as described above (except \(h 10 \text{ cm}\)). Lyophilization overnight furnished 10.52 g (101%) of (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))urea free of heavy metals. The resin was regenerated as described above.

Microbiological Methods and Biosynthesis. Nutrient media: *Luria-Bertani (LB) medium ([15], modified): Bacto tryptone (10 g; Difco Laboratories, Detroit, Michigan, USA), yeast extract (5g; Difco), NaCl (10 g), agar (15 g), adenine (20 mg), H\(_2\)O (1000 ml); the pH was adjusted to 7.5 with 2N NaOH prior to sterilization. SD Medium [6]: d-sorbitol (20 g; Sigma), autolyzed yeast (15 g; Difco), KH\(_2\)PO\(_4\) (1 g), K\(_2\)HPO\(_4\) 3H\(_2\)O (3 g), H\(_2\)O (1000 ml); the pH was adjusted to 6.5 with 1 N HCl prior to sterilization. The FM medium was prepared in two portions: anh. d-glucose (100 g; Siefried, Zofingen, CH) was added to H\(_2\)O (300 ml) and sterilized (FM a). Separately, CaCO\(_3\) (30 g; Fluka puriss.), (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))SO\(_{4}\) (18.92 g), (\(\text{H} \cdot \text{N} \cdot \text{H}_{2}\))urea (9.32 g), l-aspartic acid (0.8 g; Fluka puriss.), corn steep liquor (20 g; Sigma), T. *utilis* RNA (2.0 g; Fluka), CaCl\(_2\) · 6 H\(_2\)O (5.0 g; Fluka BioChemika), MgSO\(_4\) · 7 H\(_2\)O (2.0 g; Fluka puriss.), Ca\(_2\) (0.5 g; Merck p.a.), MnSO\(_4\) · 4-6 H\(_2\)O (2.5 mg; Fluka puriss., p.a.) were added to H\(_2\)O (700 ml), adjusted to pH 6.8 with 2N NaOH and autoclaved (FM b). All media were kept under cotton plugs and stored at 4° if necessary.

B. subtilis is pathogenic to humans and should be handled with appropriate caution [16]. Stock cultures of strain NA6601 were maintained on agar slants containing LB medium (3 ml each). After incubation for 72 h at 28°, these were stored at 4° and used to inoculate fresh slants every two months. For the biosynthetic production, a portion of the stock was first transferred onto fresh LB medium and incubated at 28°. A 1 ml portion of SD medium was added to the slant and used to suspend the bacteria. The suspension was then transferred into a 300-ml Erlenmeyer flask containing 30 ml of SD medium. The SD cultures were incubated at 37° in a bench-top rotary shaker (270 rpm) for 24 h in the dark. For the production, creased 500-ml Erlenmeyer flasks were used each containing FM b (14 ml), FM a (6 ml), and added incubated SD medium (6.5 ml, 33 pl). The SD cultures produced the rings as well, but never foamed. The decrease in volume of the 26.5-ml cultures due to evaporation during the 80-h period was 1.5-2.5%. Temp. 40°. Detection at 259 nm. The culture broth (0.1 ml) was mixed with buffer A

\[
\text{Buffer A} = 0.2 \text{m} \text{NH}_4\text{(HCOO)}_2, \text{pH ca. 3.5; buffer B: A/MeOH 7:3, Flow rate 1.3 ml min}^{-1}\text{; Time programme: 0–1 min 100% A, 1–15 min 100–50% A (linear), 15–15.2 min 50–100% A, 15.2–23 min 100% A. Temp. 40°. Detection at 259 nm. The culture broth (0.1 ml) was mixed with buffer A (10 ml) and filtered through 1 μm, then 0.2 μm pores. Per run, 10 μl were injected. } t_R (\text{fr}) 9–11 min, t_R (G) = t_R (I) + 0.8 min. \text{No volume correction factor owing to evaporation was applied for the peak integrals.}
\]

Workup and Formation of Derivatives 1 and 2. Celite (150 g) was added to the culture broth (850 ml). The mixture was stirred and boiled for 10 min. The suspension was filtered hot through a vapour-heated funnel (Whatman GF). The precipitates were washed with H\(_2\)O (100 ml) and filtered. HPLC Analysis showed the absence of I and G in the residual precipitates. The filtrates were concentrated and cooled to 0°. Subsequent filtrations, concentrations of the mother liquors, and coolings furnished up to 76% of crude G and smaller fractions of I (HPLC). The final crop was obtained after extracting the mother liquor with CH\(_2\)Cl\(_2\) (3 × 100 ml). A total amount of

\[\text{FM cultures of twice and four-fold volumes, as well as 1000-ml cultures in an aerated fermenter with or without pH control produced less, less reliably, or not at all. In general, the smaller the volume, the higher was the yield. For guanosine production, 53-ml portions proved to be equally good as 26.5-ml portions, but more inosine was produced in the smaller portions.} \]
of 16.8 g of off-white solid was obtained after drying in vacuo. The noncrystallizable final mother liquor was enriched in I. It was dissolved in H$_2$O, carefully adjusted to pH 11 and rapidly vapour-distilled in the Parnas-Wagner apparatus during 10 min, to regenerate unused 15NH$_3$ as its hydrochloride. The residual solid was readjusted from pH 10 to 11, and the resulting clear soln. (150 ml) was applied onto a FC column containing strong anion-exchange resin (50 g; \odot 3 cm, h 10 cm). The resin, originally in the Cl$^-$ form, had been pretreated with H$_2$O (100 ml) for 3-4 h, packed into the column, and washed with 2N NaOH (200 ml) and H$_2$O until the eluate was neutral. After adsorption of the mother liquor onto the resin, it was first washed with H$_2$O until the pH was neutral (500 ml). According to HPLC, this soln. was free of G and I. Subsequently, 5%aq. AcOH soln. was used to elute and fractionate (40 x 25 ml) acidic compounds, among them G and I. The I- and G-containing fractions (Nos. 3-23) were pooled, concentrated in vacuo, and lyophilized to yield 4.33 g of brownish solid.

Both solids were resuspended in dry pyridine and co-evaporated under reduced pressure (3 x 50 ml per 5 g of solid). Isobutyl chloride (30 ml, Fluka) was added to a stirred 5-10% suspension in dry pyridine (200 ml) at 0°. After stirring overnight at r.t., MeOH (100 ml) was added to the cooled clear soln. and, after 30 min at r.t., the solvents were evaporated. The resulting redish amorphous solid was dissolved in Et$_2$O and extracted with 5%aq. NaHCO$_3$ soln. and brine. The aq. extracts were washed with small amounts of CH$_2$Cl$_2$ and the combined org. phases dried (Na$_2$SO$_4$) and evaporated. Thus, 12.4 g of G-enriched solid gave 17 g of crude 1/2, whereas 24 g of crude 1/2 were obtained from 5.5 g of I-enriched solid.

Reverse-phase HPLC Analysis of 1 and 2. Eluant A: H$_2$O/MeOH 1:1, eluant B: MeOH. Flow rate 2 ml min$^{-1}$. Time programme: 0.5 min 0% B, 0.5-1.5 min. 0-30% B (lin.), 1.5-6.5 min 30-100% B (lin.), 6.5-11.5 min 40-100% B (lin.), 11.5-15 min 60% B, 15-15.1 min 60-0% B, 15.1-20 min 0% B. Temp. 40°. Detection at 259 nm. t_R (1) ca. 13 min, t_R (2) ca. 16 min.

Chromatographic Purification and Separation of 1 and 2. Ca. 6 g of crude 1/2 were submitted to FC SiO$_2$ (750 g, \odot 10 cm, h 40 cm). Fractions X (containing 2 and an unidentified compound in large amounts but only in one batch), A, B, and C were separately purified by reverse-phase MPLC. The fractions were each dissolved in CH$_2$Cl$_2$, mixed with reverse-phase SiO$_2$ from 3 precolumns and evaporated to complete dryness. The impregnates were resuspended in H$_2$O/MeOH 1:1 (reversed-phase MPLC eluant A) and pressed into the mounted and empty precolumns. After conditioning with eluant A for 10 min at the maximum flow rate, the gradient was started (eluant B = MeOH): 1 min A, 15 min 0-50% B, 30 min 50-75% B, 15 min 75-100% B, 20 min 100% B, 1 min 100-0% B, 20 min 0% B. The pressure was kept at 38-40 bar, i.e., the flow rate was continuously readjusted as the pressure decreased with increasing MeOH contents (5-10 ml min$^{-1}$). The fractions were analyzed by reversed-phase HPLC and pooled according to their composition. A total of 5.6 g of G fraction and 4.0 g of I fraction were obtained as yellowish foams. The G fraction was dissolved in CH$_2$Cl$_2$ (10 ml), loaded onto the normal-phase MPLC column, and chromatographed with 4% MeOH in CH$_2$Cl$_2$. The fractions were analyzed by TLC. The regeneration of the column involved a washing step with 8% MeOH/CH$_2$Cl$_2$ (4 l), reconditioning with CH$_2$Cl$_2$ (1.5 l) and 4% MeOH/CH$_2$Cl$_2$ (500 ml). The I fraction was dissolved in 10 ml of this solvent and chromatographed with 6% MeOH/CH$_2$Cl$_2$. The column was subsequently washed with 8% MeOH/CH$_2$Cl$_2$ (2 l). The separations yielded 5.04 g of 2 and 1.44 g of 1.

Spectroscopic Characterization of 2',3',5'-Tri-O-(2-methylpropanoyl) \[1,3,7,9-^{15}N\]inosine (1). 1H-NMR (400 MHz, CDCl$_3$, SiMe$_4$): 1.136, 1.162, 1.18-1.24 (2d, $J = 7$, and m, resp., 3 Me$_2$CHCOO); 2.57, 2.63 (2sept., $J = 8.3, 2J(N(3),N(9)) = 17.5$), 2.7 (d, $J = 5$), 3.8, H-C(3)'); 5.85 (td, $J = 5.4$, 2J(H-C(2'),N(9)) = 0.5, H-C(1')); 8.2 (dd, 2J(H-C(8),N(7)) = 11.65, 2J(H-C(8),N(9)) = 8.3, H-C(8)); 8.17 (d + dd, 2J(H-C(2),N(3)) = 13.2, 2J(H-C(2),N(1)) = 7.5, H-C(2)); 12.90 (d, 1J(HN(1),N(1)) = 83, HN(1)). 13C-NMR (101 MHz, CDCl$_3$, SiMe$_4$): 18.7-19.0 (6s, 6 C(3')); 33.7, 33.8, 34.0 (3s, 3 C(2)); 63.0 (s, C(5')); 70.4 (s, C(3')); 73.4 (s, C(2')); 80.8 (s, C(4')); 86.56 (d + s, 1J(N(9),C(1)) = 12, C(1')); 125.4 (m, C(5)); 138.4 (d, 1J(N(9),C(8)) = 11, C(8)); 145.2 (dd, 1J(N(1),C(2)) = 8, J < 2, C(2)); 148.7 (dd, 1J = 20, J = 3, C(4)); 158.9 (m, C(6)); 175.3, 175.6, 176.5 (3s, 3 C(1')). 15N-NMR (41 MHz, CDCl$_3$, ext. Me$_3$NO, incl. J(H,15N)); -210.60 (mdd, 2J(H-C(8),N(9)) = 8.2, 1J(N(3),N(9)) = 3.8, 2J(N(7),N(9)) = 2.0, N(9)); -208.35 (br. m, N(1)); -163.91 (dd, 2J(H-C(2),N(3)) = 13.2, 2J(N(9),N(3)) = 3.3, N(3)); -133.25 (dd, 3J(H-C(8),N(7)) = 11.6, 2J(N(9),N(7)) = 2.0, N(7)). FAB$^+$-MS (NBA): 485 (0.5), 484 (4.18), 483 (17.45), 482 (6.16), 481 (1.08) 480 (0.32), 479 (0.11; molecular ions); 345 (2.56), 344 (16.73), 343 (87.80), 342 (2.48), 341 (1.23; Rib2,3,5Ib3 cations); 168 (5.27), 169 (29.32), 143 (0.35), 142 (0.96), 141 (18.92), 140 (6.47), 139 (4.07), 136 (2.12; hypoxanthine cations); 97 (21); 71 (80); 43 (100).

Spectroscopic Characterization of N$^{2'}$-(2-Methylpropanoyl)-'2',3',5'-tris-O-(2-methylpropanoyl) \[N$^{2'},3',7,9-^{15}N\]guanosine (2). 1H-NMR (400 MHz, CDCl$_3$, SiMe$_4$): 1.124, 1.142 (2d, $J = 7$, Me$_2$CHCOOC(2) or -C(3')); 1.148, 1.168 (2d, $J = 7$, Me$_2$CHCOOC(3') or -C(2')); 1.225 (d, $J = 7$, Me$_2$CHCOOC(5')); 1.303, 1.317 (2d, $J = 7$, Me$_2$CHCON); 2.56, 2.57 (2sept., $J = 7$, Me$_2$CHCOOC(2'), Me$_2$CHCOOC(3')). 2.63 (sept., $J = 7$,
Me,CHCOOC(S') = 2.73 (sept.d, J = 7.3, J(N-C(2), H-C(2')) = 0.8, Me,CHCON); 4.50 (t, J = 7, H-C(4')); 4.51 (dd, J = 14.7, H-C(5')); 4.62 (dd, J = 14.7, H-C(5')); 5.80 (dd, J = 4.9, 3.8, H-C(3')); 5.92 (dd, J = 5.1, J(H-C(1'),N(9)) = 1.2, H-C(1')); 5.99 (td, J = 5.1, J(H-C(2'),N(9)) = 1.7, H-C(2')); 7.6966, 7.6989, 7.6982 (s + dd + dd + dd, 2J(N(7), H-C(8)) = 11.5), 2J(N(9), H-C(8)) = 8.5, 5J(N-C(2), H-C(8)) = 0.8, H-C(8')); 9.03 (dd + s, J(H-N-C(2), N-C(2)) = 92.5, 2J(H-N-C(2), N(3)) = 2.1, H-N-C(2)); 12.03 (d + s, 1J(HN(1)) = 91.2, HN(1)). 13C-NMR (101 MHz, CDC13, SiMe4); 18.7-19.0 (6s, 6.3 C(S')); 2 (C(S')); 33.7, 33.8, 33.9 (3s, 3 C(S')); 36.56 (d + s, J(N-C(2), C(2')) = 8, C(2')); 62.9 (s, C(S)); 70.8 (s, C(S)); 72.7 (s, C(S')); 80.2 (s, C(S')); 87.66, 86.68 (d + s, J(N(9), C(1')) = 12, C(1')); 122.6 (td, 2J(N(9), C(5)) = 4.5, 2J(N(3), C(5)) = 4.5, 1J(N(7), C(5)) = 2.1, C(5)); 138.4 (d, 1J(N(9), C(8)) = 11, C(8)); 147.1-147.8 (m, C(4), C(2)); 155.3 (dd, 2J(N(9), C(6)) = 9.5, 1J(N(3), C(6)) = 6.9, J(N(1), C(6)) < 2, C(6)); 175.5, 175.9, 177.7 (3s, 3 C(1')); 178.725, 178.735 (dd + s, 1J(N-C(2), C(1')) = 11, 2J(N(3), C(1')) = 2.5 C(1')). 15N-NMR (41 MHz, CDCl3, ext. Me3NO2, incl. J(1H,15N)); −247.60 (ddd, 1J(HN(1), C(2)) = 92.5, 2J(N(1), N-C(2)) = 16.8, 2J(N(3), N-C(2) = 6.9, N-C(2)); −228.23 (dd, 1J(HN(1), N(1)) = 91.2, 2J(N(1), N-C(1)) = 16.8, N(1)); −213.32 (mddd, 2J(H-C(8), N(9)) = 8.6, 1J(N(3), N(9)) = 3.9, J(N, N) = 1.5, N(9)); −199.93 (ddd, 2J(N-C(2), N(3)) = 6.9, 2J(N(9), N(3)) = 3.9, J(N, N) = 1.5, N(3)); −132.83 (d, 1J(H-C(8), N(7)) = 11.5, N(7)). FAB+-MS (NBA): 571 (0.96), 570 (6.11), 569 (15.6), 568 (3.76), 567 (9.00), 565 (0.60), 564 (2.28), 563 (0.34; molecular ions); 244 (7.70), 433 (41.96; Rib2,3,5tb, cations); 229 (0.08), 228 (0.84), 227 (9.55), 226 (5.18), 225 (1.55), 224 (0.49), 223 (0.67), 222 (1.09), 221 (0.18), (ib2G cations); 168 (2.30), 169 (22.93), 97 (19), 96 (130).

\[\text{[13,7,9-15N]Guanosine.} \]

A small aliquot of 2 (ca. 60 mg) was dissolved in methanolic 0.35N MeONa (ca. 3 ml) and stirred overnight at r.t. After neutralization with Dowex-H+ TLC (AcOEt/MeOH/H2O 4:1:0.6) showed only small amounts of \[\text{[13,7,9-15N]Guanosine.} \]

It was important to neutralize the mixture with Dowex-H+ TLC (AcOEt/MeOH/H2O 4:1:0.6) showed only small amounts of \[\text{[13,7,9-15N]Guanosine.} \]

After evaporation of the solvent, 35% eq. NH3 soln. (ca. 2 ml) was added and the soln. heated in a sealed vessel at 55° for 4 h. After evaporation of NH3, a semi-prep. HPLC purification of the mixture (flow rate 15 ml min\(^{-1}\)) eluant; A H4O, eluant B MeCN/H2O 3:7; 40°; gradient: B 0-10% (0-10 min), B 10% (10-13 min, B 0% (13.1-18 min); detection at 260 nm; \(t_k 10.4 \) min) furnished pure, crystalline \([13,7,9-15N]Guanosine. \)

\[\text{[13,7,9-15N]Guanosine.} \]

After evaporation of the solvent, 35% eq. NH3 soln. (ca. 2 ml) was added and the soln. heated in a sealed vessel at 55° for 4 h. After evaporation of NH3, a semi-prep. HPLC purification of the mixture (flow rate 15 ml min\(^{-1}\)) eluant; A H4O, eluant B MeCN/H2O 3:7; 40°; gradient: B 0-10% (0-10 min), B 10% (10-13 min, B 0% (13.1-18 min); detection at 260 nm; \(t_k 10.4 \) min) furnished pure, crystalline \([13,7,9-15N]Guanosine. \)

\[\text{[13,7,9-15N]Guanosine.} \]

After evaporation of the solvent, 35% eq. NH3 soln. (ca. 2 ml) was added and the soln. heated in a sealed vessel at 55° for 4 h. After evaporation of NH3, a semi-prep. HPLC purification of the mixture (flow rate 15 ml min\(^{-1}\)) eluant; A H4O, eluant B MeCN/H2O 3:7; 40°; gradient: B 0-10% (0-10 min), B 10% (10-13 min, B 0% (13.1-18 min); detection at 260 nm; \(t_k 10.4 \) min) furnished pure, crystalline \([13,7,9-15N]Guanosine. \)

\[\text{[13,7,9-15N]Guanosine.} \]

\[\text{[13,7,9-15N]Guanosine.} \]

After evaporation of the solvent, 35% eq. NH3 soln. (ca. 2 ml) was added and the soln. heated in a sealed vessel at 55° for 4 h. After evaporation of NH3, a semi-prep. HPLC purification of the mixture (flow rate 15 ml min\(^{-1}\)) eluant; A H4O, eluant B MeCN/H2O 3:7; 40°; gradient: B 0-10% (0-10 min), B 10% (10-13 min, B 0% (13.1-18 min); detection at 260 nm; \(t_k 10.4 \) min) furnished pure, crystalline \([13,7,9-15N]Guanosine. \)

\[\text{[13,7,9-15N]Guanosine.} \]

\[\text{[13,7,9-15N]Guanosine.} \]

After evaporation of the solvent, 35% eq. NH3 soln. (ca. 2 ml) was added and the soln. heated in a sealed vessel at 55° for 4 h. After evaporation of NH3, a semi-prep. HPLC purification of the mixture (flow rate 15 ml min\(^{-1}\)) eluant; A H4O, eluant B MeCN/H2O 3:7; 40°; gradient: B 0-10% (0-10 min), B 10% (10-13 min, B 0% (13.1-18 min); detection at 260 nm; \(t_k 10.4 \) min) furnished pure, crystalline \([13,7,9-15N]Guanosine. \)

\[\text{[13,7,9-15N]Guanosine.} \]
(SiO₂, AcOEt): 725.4 mg (80%) of pure 3a/b: 6.1: 1. H-NMR (300 MHz, CDCl₃, SiMe₄): 3a: 1.123, 1.150, 1.198, 1.212, 1.245 (5d, J = 7, 3 Me₂CHCOO); 2.57, 2.631, 2.665 (3 sept., J = 7, 3 Me₂CHCOO); 4.46 (d, J = 4, CH₃(5')); 4.51 (dd, J = 4, H-C(4')); 5.68 (dd, J = 1.0, 5.4, H-C(3')); 5.93 (td, J = 5.3, 1.4(H-C(2'),N(9)) = 1.7, H-C(2')); 6.31 (dd, J = 5.2, 1.4(H-C(1'),N(9)) < 0.5, H-C(1')); 8.328 (s, H-C(3')); 8.42 (dd, 2J(H-C(8),N(9)) = 8.0, 2J(H-C(8),N(7)) = 12.2, H-C(8)); 8.93 (s, 2J(H-C(2'),N(3)) = 2J(H-C(2),N(1)) = 15.7, H-C(2)); 7.90 (s, H-C(5')); 3b: same as above, except 6.28 (d, J = 5.2, H-C(1')); 9.62 (s, H-C(3'), H-C(5')).

REFERENCES