Electronic transitions of the C_5H^- anion

Authors: M. Tuleja; T. Pinoa; M. Pachkova; J. P. Maiera

Abstract

Electronic transitions of the triplet chain C_5H^- anion were studied using detachment spectroscopy. The system detected in the vicinity of the electron detachment threshold is assigned to the $b^3A \leftarrow a^3A$ transition with a dipole bound state (DBS) character. The second system measured by autodetachment spectroscopy is attributed to the $c^3A \leftarrow a^3A$ Feshbach electronic transition. Negative anharmonicity of the vibrational progression built upon the low frequency CCC in-plane bending mode v_{12} is observed in both DBS and Feshbach states. This indicates a barrier to linearity on the potential energy surface in both excited states. The triplet chain C_5H^- anion exhibits similar electronic properties to C_3H^-. Renner-Teller and vibronic effects between the 3A DBS and Feshbach states are inferred and may explain the stabilisation of the DBS. This interaction is weaker in C_5H^- than C_3H^- leading to smaller barrier heights on the potential energy surface.

Keywords: dipole bound states; Feshbach state; Renner-Teller effect; photodetachment spectroscopy; carbon chains; interstellar chemistry

Affiliation: a Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland

DOI: 10.1080/00268970903501691
First Published on: 22 March 2010