Publications

  1. In vivo catalyzed new-to-nature reactions

    J.G. Rebelein, T.R. Ward

    Curr. Opin. Biotechnol., 2018, xx, xx. 10.1016/j.copbio.2017.12.008

  2. Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

    M.M. Pellizzoni, F. Schwizer, C.W. Wood, V. Sabatino, Y. Cotelle, S. Matile, D.N. Woolfson, T.R. Ward

    ACS Catal., 2018, xx, xx. 10.1021/acscatal.7b03773

  3. Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review

    F. Christoffel, T.R. Ward

    Catal. Lett., 2017, xx, xx. 10.1007/s10562-017-2285-0

  4. Directed Evolution of Artificial Imine Reductase

    M. Hestericová, T. Heinisch, L. Alonso-Cotchico, J-D. Maréchal, P. Vidossich, T.R. Ward

    Angew. Chem. Int. Ed., 2017, xx, xx. 10.1002/anie.201711016

  5. Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application

    C. Seck, M.D. Mbaye, S. Coufourier, A. Lator, J-F. Lohier, A. Poater, T.R. Ward, S. Gaillard, J-L. Renaud

    ChemCatChem, 2017, xx, xx. 10.1002/cctc.201701241

  6. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

    M. Jeschek, S. Panke, T.R. Ward

    Trends Biotechnol., 2017, xx, xx. 10.1016/j.tibtech.2017.10.003

  7. Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation

    S.G. Keller, A. Pannwitz, H. Mallin, O. Wenger, T.R. Ward

    Chem. Eur. J., 2017, xx, xx. 10.1002/chem.201703885

  8. Supramolecular Enzyme Mimics

    Y. Okamoto, T.R. Ward

    in Comprehensive Supramolecular Chemistry II, 2017, 4, 459, J.L. Atwood Ed., Elsevier. 10.1016/B978-0-12-409547-2.12551-X

  9. Transfer Hydrogenation Catalyzed by Organometallic Complexes Using NADH as a Reductant in a Biochemical Context

    Y. Okamoto, T.R. Ward

    Biochemistry, 2017, xx, xx. 10.1021/acs.biochem.7b00809

  10. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies

    F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M.M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J.C. Lewis, T.R. Ward

    Chem. Rev., 2017, xx, xx. 10.1021/acs.chemrev.7b00014

  11. Cross-Regulation of an Artificial Metalloenzyme

    Y. Okamoto, T.R. Ward

    Angew. Chem. Int. Ed., 2017, xx, xx. 10.1002/anie.201702181

  12. Biotin-independent strains of Escherichia coli for enhanced streptavidin production

    M. Jeschek, M.O. Bahls, V. Schneider, P. Marlière, T.R. Ward, S. Panke

    Metab. Eng., 2017, 40, 33. 10.1016/j.ymben.2016.12.013

  13. Artificial Metalloenzymes

    C. Trindler, T.R. Ward

    Effects of Nanoconfinement on Catalysis, 2017, 49. 10.1007/978-3-319-50207-6_3

  14. Directed Evolution of Iridium-Substituted Myoglobin Affords Versatile Artificial Metalloenzymes for Enantioselective C−C Bond-Forming Reactions

    T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 14909. 10.1002/anie.201607222

  15. Directed evolution of artificial metalloenzymes for in vivo metathesis

    M. Jeschek, R. Reuter, T. Heinisch, C. Trindler, J. Klehr, S. Panke, T.R. Ward

    Nature, 2016, 537, 661. 10.1038/nature19114

  16. Periplasmic Screening for Artificial Metalloenzymes

    M. Jeschek, S. Panke, T.R. Ward

    Methods Enzymol., 2016, 580, 539. 10.1016/bs.mie.2016.05.037

  17. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Challenges and Opportunities

    T. Heinisch, T.R. Ward

    Acc. Chem. Res., 2016, 49, 1711. 10.1021/acs.accounts.6b00235

  18. Upregulation of an Artificial Zymogen by Proteolysis

    Z. Liu, V. Lebrun, T. Kitanosono, H. Mallin, V. Köhler, D. Häussinger, D. Hilvert, S. Kobayashi, T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 11587. 10.1002/anie.201605010

  19. Anion-π Enzymes

    Y. Cotelle, V. Lebrun, N. Sakai, T.R. Ward, S. Matile

    ACS Cent. Sci., 2016, 2, 388. 10.1021/acscentsci.6b00097

  20. Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3](2+)-labeled streptavidin

    S.G. Keller, A. Pannwitz, F. Schwizer, J. Klehr, O.S. Wenger, T.R. Ward

    Org. Biomol. Chem., 2016, 14, 7197. 10.1039/c6ob01273f

  21. Modular Artificial Cupredoxins

    S.I. Mann, T. Heinisch, A.C. Weitz, M.P. Hendrich, T.R. Ward, A.S. Borovik

    J. Am. Chem. Soc., 2016, 138, 9073. 10.1021/jacs.6b05428

  22. Interfacing Functional Systems

    Y. Cotelle, N. Chuard, S. Lascano, V. Lebrun, R. Wehlauch, N. Bohni, S. Lörcher, V. Postupalenko, S.T. Reddy, W. Meier, C.G. Palivan, K. Gademann, T.R. Ward, S. Matile

    Chimia, 2016, 70, 418. 10.2533/chimia.2016.418

  23. Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions

    T.K. Hyster, T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 7344. 10.1002/anie.201508816

  24. Immobilization of an artificial imine reductase within silica nanoparticles improves its performance

    M. Hestericová, M.R. Correro, M. Lenz, P.F. Corvini, P. Shahgaldian, T.R. Ward

    Chem. Commun., 2016, 52, 9462. 10.1039/c6cc04604e

  25. From Photodriven Charge Accumulation to Fueling Enzyme Cascades in Molecular Factories

    Y. Okamoto, T.R. Ward, O.S. Wenger

    Chimia, 2016, 70, 395. 10.2533/chimia.2016.395

  26. Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water

    A.Chatterjee, T.R. Ward

    Catal. Lett., 2016, 146, 820. 10.1007/s10562-016-1707-8

  27. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology

    H. Mallin, M. Hestericová, R. Reuter, T.R. Ward

    Nat. Protoc., 2016, 11, 835. 10.1038/nprot.2016.019

  28. Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

    Y. Okamoto, V. Köhler, C.E. Paul, F. Hollmann, T.R. Ward

    ACS Catal., 2016, 6, 3553. 10.1021/acscatal.6b00258

  29. An NAD(P)H-dependent Artificial Transfer Hydrogenase for Multi-enzymatic Cascades

    Y. Okamoto, V. Köhler, T.R. Ward

    J. Am. Chem. Soc., 2016, 138, 5781. 10.1021/jacs.6b02470

  30. Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

    D.S. Mérel, S. Gaillard, T.R. Ward, J.L. Renaud

    Catal. Lett., 2016, 146, 564. 10.1007/s10562-015-1681-6

  31. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces

    Y. Cotelle, S. Benz, A.J. Avestro, T.R. Ward, N. Sakai, S. Matile

    Angew. Chem. Int. Ed., 2016, 55, 4275. 10.1002/anie.201600831

  32. Synthetic Cascades by Combining Artificial Metalloenzymes with Monoamine Oxidases (MAO-N)

    M. Dürrenberger, V. Köhler, Y.M. Wilson, D. Ghislieri, L. Knörr, N.J. Turner, T.R. Ward

    in Practical Methods in Biocatalysis and Biotransformations, 2016, 3, 213, J. Whitthal, P. Sutton and W. Kroutil Eds., Wiley

  33. Streptavidin based Artificial Metallo-annulase for the Enantioselective Synthesis of Dihydroisoquinolones

    T.K. Hyster, L. Knörr, T. Rovis, T.R. Ward

    in Practical Methods in Biocatalysis and Biotransformations, 2016, 3, 101, J. Whitthal, P. Sutton and W. Kroutil Eds., Wiley

  34. N-Heterocyclic Carbene Ligands Bearing a Naphthoquinone Appendage: Synthesis and Coordination Chemistry

    E.A. Miłopolska, M. Kuss-Petermann, M. Neuburger, O. Wenger, T.R. Ward

    Polyhedron, 2016, 103, 261. 10.1016/j.poly.2015.04.019

  35. An enantioselective artificial Suzukiase based on the biotin-streptavidin technology

    A. Chatterjee, H. Mallin, J. Klehr, J. Vallapurackal, A.D. Finke, L. Vera, M. Marsh, T.R. Ward

    Chem. Sci., 2016, 7, 673. 10.1039/c5sc03116h

  36. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design

    T. Heinisch, M. Pellizzoni, M. Dürrenberger, C.E. Tinberg, V. Köhler, J. Klehr, T. Schirmer, D. Baker, T.R. Ward

    J. Am. Chem. Soc., 2015, 137, 10414. 10.1021/jacs.5b06622

  37. Profluorescent Substrates for the Screening of Olefin Metathesis Catalysts

    R. Reuter, T.R. Ward

    Beilstein J. Org. Chem., 2015, 11, 1886. 10.3762/bjoc.11.203

  38. Latest Developments in Metalloenzyme Design and Repurposing

    T. Heinisch, T.R. Ward

    Eur. J. Inorg. Chem., 2015, 21, 3406. 10.1002/ejic.201500408

  39. Enzyme Repurposing of a Hydrolase as an Emergent Peroxidase upon Metal Binding

    N. Fujieda, J. Schätti, E. Stuttfeld, K. Ohkubo, T. Maier, S. Fukuzumi, T.R. Ward

    Chem. Sci., 2015, 6, 4060. 10.1039/c5sc01065a

  40. Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase

    J. Zhao, A. Kajetanowicz, T.R. Ward

    Org. Biomol. Chem., 2015, 13, 5652. 10.1039/C5OB00428D

  41. Artificial metalloenzymes for the diastereoselective reduction of NAD+ to NAD2H

    T. Quinto, V. Köhler, D. Häussinger, T.R. Ward

    Org. Biomol. Chem., 2015, 13, 357. 10.1039/C4OB02071E

  42. D(+)-Biotin

    R. Reuter, T.R. Ward

    in Encyclopedia of Reagents for Organic Synthesis, 2014. 10.1002/047084289X.rn01826

  43. Evaluation of the Formate Dehydrogenase Activity of Three-Legged Pianostool Complexes in Dilute Aqueous Solution

    S. Keller, M. Ringenberg, D. Häussinger, T.R. Ward

    Eur. J. Inorg. Chem., 2014, 34, 5860. 10.1002/ejic.201402348

  44. Concurrent Cross Metathesis and Enzymatic Oxidation: Enabling Off Equilibrium Transformations

    V. Koehler, T.R. Ward

    ChemCatChem, 2014, 6, 2191. 10.1002/cctc.201402150

  45. Method for neutralizing detrimental effects of thiol-bearing compounds on metal catalysts

    Y.M. Wilson, M. Dürrenberger, E. Nogueira, T.R. Ward

    European Patent Application, 2014, EP 14170960.0 - 1352.

  46. Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts

    Y.M. Wilson, M. Dürrenberger, E. Nogueira, T.R. Ward

    J. Am. Chem. Soc., 2014, 136, 8928. 10.1021/ja500613n

  47. Recent Achievements in the Design and Engineering of Artificial Metalloenzymes

    M. Dürrenberger T.R. Ward

    Curr. Op. Chem. Biol., 2014, 19, 99. 10.1016/j.cbpa.2014.01.018

  48. An Artificial Imine Reductase Based on the RNAse S Scaffold

    M. Genz, V. Koehler, M. Krauss, D. Singer, R. Hoffmann, T.R. Ward, N. Sträter

    ChemCatChem, 2014, 6, 736. 10.1002/cctc.201300995

  49. Recent Trends in Biomimetic NADH Regeneration

    T. Quinto, V. Koehler, T.R. Ward

    Top. Catal., 2014, 57, 321. 10.1007/s11244-013-0187-y

  50. Structural, Kinetic and Docking Studies of Artificial Imine Reductases Based on the Biotin-Streptavidin Technology: An Induced Lock-and-Key Hypothesis

    V. Munoz-Robles, M. Dürrenberger, A. Lledos, T.R. Ward, J.D. Maréchal

    J. Am. Chem. Soc., 2014, 136, 15676. http://pubs.acs.org/doi/abs/10.1021/ja508258t

  51. Biotinylated Metathesis Catalysts: Synthesis and Performance in Ring Closing Metathesis

    A. Kajetanowicz, A. Chatterjee, R. Reuter, T.R. Ward

    Catal. Lett., 2014, 144, 373. 10.1007/s10562-013-1179-z

  52. Novel process to produce streptavidin and other biotin-binding proteins

    M. Jeschek, T.R. Ward, S. Panke

    European Patent Application, 2014, EP13178560.2.

  53. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin- Streptavidin Technology

    T. Quinto, F. Schwizer, M.J. Zimbron, A. Morina, V. Köhler, T.R. Ward

    ChemCatChem, 2014, 6, 1010. 10.1002/cctc.201300825

  54. Computational Insights on an Artificial Imine Reductase Based on the Biotin– Streptavidin Technology

    V. Munoz-Robles, P. Vidossich, A. Lledos, T.R. Ward, J.D. Maréchal

    ACS Catal., 2014, 4, 833. 10.1021/cs400921n

  55. Enantioselective Catalysis with Recombinant Wild-Type Streptavidin Secreted at High-Level by Pichia Pastoris

    E. Nogueira, T. Schleier, M. Dürrenberger, K. Ballmer-Hofer, T.R. Ward, R. Jaussi

    Prot. Expr. Purif., 2014, 93, 54. 10.1016/j.pep.2013.10.015

  56. Biomacromolecules as Ligands for Artificial Metalloenzymes

    D. Hamels, T.R. Ward

    in Compr. Inorg. Chem II., 2013, 6, 737, J. Reedijk and K. Poeppelmeier Eds., Elsevier. 10.1016/B978-0-08-097774-4.00626-4

  57. Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on the Biotin- Streptavidin Technology

    F. Schwizer, V. Köhler M. Dürrenberger, L. Knörr, T.R. Ward

    ACS Catalysis, 2013, 3, 1752. 10.1021/cs400428r

  58. Human Carbonic Anhydrase II as Host Protein for the Creation of Artificial Metalloenzymes: The Asymmetric Transfer Hydrogenation of Imines

    F. Monnard, E. Nogueira, T. Heinisch, T. Schirmer, T.R. Ward

    Chem. Sci., 2013, 4, 3269. 10.1039/c3sc51065d

  59. Metal-Catalyzed Organic Transformations inside a Protein Scaffold Using Artificial Metalloenzymes

    V.K.K. Praneeth, T.R. Ward

    in Coordination Chemistry in Protein Cages: Principles, Design, and Applications, 2013, 203, T. Ueno and Y. Watanabe Eds., Wiley-VCH. 10.1002/9781118571811.ch8

  60. Scoring Multipole Electrostatics in Condensed-Phase Atomistic Simulations

    T. Bereau, C. Kramer, F. Monnard, E. Nogueira, T.R. Ward, M. Meuwly

    J. Phys. Chem. B, 2013, 117, 5460. 10.1021/jp400593c

  61. Towards a Broadly Applicable Force Field for d6-piano Stool Complexes

    M. Schmid, T.R. Ward, M. Meuwly

    J. Chem. Theory Comput., 2013, 9, 2313. 10.1021/ct301080d

  62. A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes based on the Biotin-Streptavidin Technology

    J.M. Zimbron, T. Heinisch, M. Schmid, D. Hamels, E. S. Nogueira, T. Schirmer, T.R. Ward

    J. Am. Chem. Soc., 2013, 135, 5384. 10.1021/ja309974s

  63. Author Profile

    T.R. Ward

    Angew. Chem. Int. Ed., 2013, 52, 4722. 10.1002/anie.201208430

  64. Fluorescence-Based Assay for the Optimization of Artificial Transfer Hydrogenase Activity within a Biocompatible Compartment

    T. Heinisch, K. Langowska, P. Tanner, J.L. Reymond, W. Meier, C. Palivan, T.R. Ward

    ChemCatChem, 2013, 3, 720. 10.1002/cctc.201200834

  65. New Synthetic Cascades by Combining Biocatalysts with Artificial Metalloenzymes

    V. Köhler, Y.M. Wilson, M. Dürrenberger, D. Ghislieri, E. Churakova, T. Quinto, L. Knörr, D. Häussinger, F. Hollmann, N.J. Turner, T.R. Ward

    Nat. Chem., 2013, 5, 93. 10.1038/nchem.1498

  66. Organometallic Chemistry in Protein Scaffolds

    Y.M. Wilson, M. Dürrenberger, T.R. Ward

    in Protein Engineering Handbook, 2012, 3, 215, S. Lütz and U.T. Bornscheuer Eds., Wiley-VCH.

  67. Biotinylated Rh(III) Complexes in Engineered Streptavidin for Rate Enhanced Asymmetric C-H Activation

    T.K. Hyster, L. Knörr, T.R. Ward, T. Rovis

    Science, 2012, 338, 500. 10.1126/science.1226132

  68. Redox Active Ligands in Catalysis

    V.K.K. Praneeth, M.R. Ringenberg, T.R. Ward

    Angewandte Chem. Int. Ed., 2012, 51, 10228. 10.1002/anie.201204100

  69. Identification of two- histidine one-carboxylate binding motifs in proteins amenable to facial coordination to metals

    B. Amrein, M. Schmid, F. Gilardoni, F. Seebeck, T.R. Ward

    Metallomics, 2012, 4, 379. 10.1039/c2mt20010d

  70. Chemically Programmed Supramolecular Assembly of Hemoprotein and Streptavidin with Alternating Alignment

    K. Oohora, S. Burazerovic, A. Onoda, Y.M. Wilson, T.R. Ward, T. Hayashi

    Angew. Chem. Int. Ed., 2012, 51, 3818. 10.1002/anie.201107067

  71. Arylsulfonamides as Carbonic Anhydrase Inhibitors: Theory and Validation

    M. Schmid, E. Nogueira, F. Monnard, T.R. Ward, M. Meuwly

    Chem. Sci., 2012, 3, 690. 10.1039/c1sc00628b

  72. Enantioselective Hybrid Catalysts

    A. Pordea, T.R. Ward

    in Comprehensive Chirality, 2012, 7, 516, N. J. Turner Ed., Elsevier. 10.1039/c1sc00628b

  73. A Process for the Hydrogenation of Ketoesters

    M. Bicker, M.A. Caraucan Davilla, G. Heckmann, L. Farpour, H.G. Nedden, C. Malan, J. Pierron, D. Veghini, T.R. Ward, A. Zanotti-Gerosa

    Patent Application, 2011, PCT/EP2011/002323, WO 2011/141160

  74. An Artificial Metalloenzyme for Olefin Metathesis

    M. Clemens, D. Gillingham, T.R. Ward, D. Hilvert

    Chem. Commun., 2011, 47, 12068. 10.1039/c1cc15005g

  75. Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-Avidin Technology

    C. Lo, M.R. Ringenberg, D. Gnandt, Y. Wilson, T.R. Ward

    Chem. Commun., 2011, 47, 12065. 10.1039/c1cc15004a

  76. Human Carbonic Anhydrase II as a Host for Piano-Stool Complexes bearing a Sulfonamide Anchor

    F. Monnard, E. Nogueira, T. Heinisch, T. Schirmer, T.R. Ward

    Chem. Commun., 2011, 47, 8238. 10.1039/c1cc10345h

  77. OsO4·Streptavidin: a tunable hybrid catalyst for the enantioselective cis-dihydroxylation of olefins

    V. Köhler, J. Mao, T. Heinisch, A. Pordea, A. Sardo, Y.M. Wilson, L. Knörr, M. Creus, J.C. Prost, T. Schirmer, T.R. Ward

    Angew. Chem. Int. Ed., 2011, 50, 10863. 10.1002/anie.201103632

  78. Merging the Best of Two Worlds: Artificial Metalloenzymes for Enantioselective Catalysis

    M.R. Ringenberg, T.R. Ward

    Chem. Commun., 2011, 8470. 10.1039/c1cc11592h

  79. Burkavidin: a novel secreted biotin-binding protein from the human pathogen Burkholderia pseudomallei

    A. Sardo, T. Wohlschlager, C. Lo, H. Zoller, T.R. Ward, M. Creus

    Prot. Expr. Purif., 2011, 77, 131. 10.1016/j.pep.2011.01.003

  80. Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

    M. Dürrenberger, T. Heinisch, Y.M. Wilson, T. Rossel, E. Nogueira, L. Knörr, A. Mutschler, K. Kersten, M.J. Zimbron, J. Pierron, T. Schirmer, T.R. Ward

    Angew. Chem. Int. Ed., 2011, 50, 3026. 10.1002/anie.201007820

  81. Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects

    M. Creus, T.R. Ward

    in Progress Inorg. Chem., 2011, 57, 203, K. D. Karlin Ed., Wiley. 10.1002/9781118148235.ch4

  82. Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantio-selective Catalysis and Beyond

    T.R. Ward

    Acc. Chem. Res., 2011, 44, 47. 10.1021/ar100099u

  83. Protein-Based Hybrid Catalysts: Design and Evolution

    V. Köhler, Y. Wilson, C. Lo, A. Sardo, T.R. Ward

    Curr. Op. Biotech., 2010, 21, 744. 10.1016/j.copbio.2010.09.004

  84. Flexibility of a Biotinylated Ligand in Artificial Metalloenzymes Based on Streptavidin — an Insight from Molecular Dynamics Simulations with Classical and Ab Initio Force Fields

    J. Panek, T.R. Ward, A. Jezierska-Mazzarello, M. Novic

    J. Comput. Aid. Mol. Des., 2010, 24, 719. 10.1007/s10822-010-9369-x

  85. Chemo-genetic optimization of DNA recognition by metallodrugs using a presenter protein strategy

    J.M. Zimbron, A. Sardo, T. Heinisch, T. Wohlschlager, J. Gradinaru, C. Massa, T. Schirmer, M. Creus, T.R. Ward

    Chem. Eur. J., 2010, 16, 12883. 10.1002/chem.201001573

  86. Proteins as Host for Enantioselective Catalysis: Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

    J. Mao, T.R. Ward

    in Molecular Encapsulation: Organic Reactions in Constrained Systems, 2010, 361, U. Brinker J.-L. Mieusset Eds., Wiley. 10.1002/9780470664872.ch13

  87. Design Strategies for the Creation of Artificial Metalloenzymes

    T. Heinisch, T.R. Ward

    Curr. Opin. Chem. Biol., 2010, 14, 184. 10.1016/j.cbpa.2009.11.026

  88. Design of a Functional Nitric Oxide Reductase within a Myoglobin Scaffold

    V. Köhler, T.R. Ward

    ChemBioChem, 2010, 11, 1049. 10.1002/cbic.201000093

  89. Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin- Streptavidin Technology by Combinations of Point Mutations

    A. Pordea, M. Creus, C. Letondor, A. Ivanova, T.R. Ward

    Inorg. Chim. Acta, 2010, 363, 601. 10.1016/j.ica.2009.02.001

  90. Artificial Metalloenzymes: Combining the Best Features of Homogeneous and Enzymatic Catalysis

    A. Pordea, T.R. Ward

    Synlett, 2009, 3225. 10.1055/s-0029-1218305

  91. Site-Dependent Excited-State Dynamics of a Fluorescent Probe Bound to Avidin and Streptavidin Investigated by Ultrafast Spectroscopy and MD Simulations

    A. Fürstenberg, O. Kel, J. Gradinaru, T.R. Ward, D. Emery, G. Bollot, J. Mareda, E. Vauthey

    ChemPhysChem, 2009, 10, 1517. 10.1002/cphc.200900132

  92. Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

    J. Steinreiber, T.R. Ward

    in Bioinspired Catalysis: Top. Organomet. Chem., 2009, 25, 93, T. R. Ward Ed., Springer-Verlag. 10.1007/978-3-540-87757-8_5

  93. Incorporation of Biotinylated Manganese Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

    A. Pordea, D. Mathis, T.R. Ward

    J. Organomet. Chem., 2009, 694, 930. 10.1016/j.jorganchem.2008.11.023

  94. Effects of Tryptophan Residue Fluorination on Streptavidin Stability and Biotin-Streptavidin Interactions via Molecular Dynamics Simulations

    J. Panek, T.R. Ward, A. Jerierska, M. Novic

    J. Mol. Model., 2009, 15, 257. 10.1007/s00894-008-0382-0

  95. Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

    J. Mao, T.R. Ward

    Chimia, 2008, 62, 956. 10.2533/chimia.2008.956

  96. Artificial Enzymes Made to Order: Combination of Rational Design and Directed Evolution

    T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 7802. 10.1002/anie.200802865

  97. Chemogenetic Protein Engineering: An Efficient Tool for the Optimization of Artificial Metalloenzymes

    A. Pordea, T.R. Ward

    Chem. Commun., 2008, 4239. 10.1039/b806652c

  98. Artificial Metalloenzymes for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

    A. Pordea, M. Creus, J. Panek, C. Duboc, D. Mathis, M. Novic, T.R. Ward

    J. Am. Chem. Soc., 2008, 130, 8085. 10.1021/ja8017219

  99. X-ray Structure and Designed Evolution fo an Artificial Transfer Hydrogenase

    M. Creus, A. Pordea, T. Rossel, A. Sardo, C. Letondor, A. Ivanova, I. LeTrong, R.E. Stenkamp, T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 1400. 10.1002/anie.200704865

  100. Artificial Metalloenzymes for Asymmetric Allylic Alkylation Based on the Biotin-Avidin Technology

    J. Pierron, C. Malan, M. Creus, J. Gradinaru, I. Hafner, A. Ivanova, A. Sardo, T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 701. 10.1002/anie.200703159

  101. Artificial Metalloenzymes as Selective Catalysts in Aqueous Media

    J. Steinreiber, T.R. Ward

    Coord. Chem. Rev., 2008, 252, 751. 10.1016/j.ccr.2007.09.016

  102. Label-Free Detection of Single Protein Molecules and Protein-Protein Interactions Using Synthetic Nanopores

    A. Han, M. Creus, G. Schürmann, V. Linder, T.R. Ward, N. de Rooij, U. Stauffer

    Anal. Chem., 2008, 80, 4651. 10.1021/ac7025207

  103. Trivalent Phosphorous Compounds in Asymmetric Catalysis; Synthesis and Applications

    C. Malan, T.R. Ward

    in Trivalent Phosphorous Compounds in Asymmetric Catalysis; Synthesis and Applications, 2008, 3, 1103, A. Börner Ed., Wiley-VCH.

  104. High Level Expression of Mature Streptavidin in E. coli

    N. Humbert, A. Zocchi, J.M. Neuhaus, P. Schürmann, T.R. Ward

    in Methods in Molecular Biology: Avidin-Biotin Techniques, 2008, 418, 101, R. J. McMahon Ed., Humana Press Inc. 10.1007/978-1-59745-579-4_9

  105. Functionality Screen of Streptavidin Mutants by Non- Denaturing SDS-PAGE Using Biotin-4-Fluorescein

    N. Humbert, T.R. Ward

    in Methods in Molecular Biology: Avidin-Biotin Techniques, 2008, 418, 63, R. J. McMahon Ed., Humana Press Inc. 10.1007/978-1-59745-579-4_6

  106. Counter Propagation Artificial Neural Networks Modeling of Enantioselectivity of Artificial Metalloenzymes

    S. Mazurek, T.R. Ward, M. Novic

    Mol. Divers., 2007, 11, 141. 10.1007/s11030-008-9068-x

  107. Designed Evolution of Artificial Metalloenzymes: Protein Catalysts Made to Order

    M. Creus, T.R. Ward

    Org. Biomol. Chem., 2007, 5, 1835. 10.1039/b702068f

  108. Hierarchical Self-Assembly of One Dimensional Streptavidin Bundles as Collagen Mimitics for the Biomineralization of Calcite

    S. Burazerovic, J. Gradinaru, J. Pierron T.R. Ward

    Angew. Chem. Int. Ed., 2007, 46, 5510. 10.1002/anie.200701080

  109. Second Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Activity, Stability and Selectivity by Introduction of Enantiopure Amino Acid Spacers

    U.E. Rusbandi, C. Lo, M. Skander, A. Ivanova, M. Creus, N. Humbert, T.R. Ward

    Adv. Synth. Catal., 2007, 349, 1923. 10.1002/adsc.200700022

  110. Second Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Selectivity and Organic Solvent Tolerance by Introduction of an (R)-Proline Spacer

    U.E. Rusbandi, M. Skander, A. Ivanova, C.M. Malan, T.R. Ward

    C. R. Chim., 2007, 10, 678. 10.1016/j.crci.2007.02.020

  111. Artificial Metalloenzymes for Enantioselective Catalysis: Recent Advances

    C. Letondor, T.R. Ward

    ChemBioChem, 2006, 7, 1845. 10.1002/cbic.200600264

  112. Artificial Transfer Hydrogenases Based on the Biotin-Avidin Technology: Fine Tuning of the Active Site by Saturation Mutagenesis of the Host Protein

    C. Letondor, A. Pordea, N. Humbert, A. Ivanova, S. Mazurek, M. Novic, T.R. Ward

    J. Am. Chem. Soc., 2006, 128, 8320. 10.1021/ja061580o

  113. Inter- and intramolecular interactions between transition metal complexes in supramolcular systems

    S. Delahaye, C. Loosli, S.X. Liu, S. Decurtins, G. Labat, A. Neels, A. Loosli, T.R. Ward, A. Hauser

    Adv. Func. Mat., 2006, 16, 286. 10.1002/adfm.200500329

  114. Crystallographic Analysis of a Full-Length Streptavidin with Its C-terminal Peptide Bound in the Biotin-Binding Site

    I. Le Trong, N. Humbert, T.R. Ward, R.E. Stenkamp

    J. Mol.Biol., 2006, 356, 738. 10.1016/j.jmb.2005.11.086

  115. (Strept)avidin as Host for Biotinylated Coordination Complexes: Stability, Chiral Discrimination and Cooperativity

    A. Loosli, U.E. Rusbandi, J. Gradinaru, K. Bernauer, C.W. Schlaepfer, M. Meyer, S. Mazurek, M. Novic, T.R.Ward

    Inorg. Chem., 2006, 45, 660. 10.1021/ic051405t

  116. Synthesis and Characterization of Tetrahedral Ru3O Clusters with Intrinsic Framework Chirality: A Chiral Probe of the Intact Cluster Catalysis Concept

    L. Vieille-Petit, G. Süss-Fink, B. Therrien, T.R. Ward, H. Stœckli-Evans, G. Labat, L. Karmazin-Brelot, A. Neels, T. Bürgi, R.G. Finke, C.M. Hagen

    Organometallics, 2005, 24, 6104. 10.1021/om050643t

  117. Tailoring the Active Site of Chemzymes Using a Chemogenetic Optimization Procedure: Towards Substrate-Specific Artificial Hydrogenases Based on the Biotin- Avidin Technology

    G. Klein, N. Humbert, J. Gradinaru, A. Ivanova, F. Gilardoni, U.E. Rusbandi, T.R. Ward

    Angew. Chem. Int. Ed., 2005, 44, 7764. 10.1002/anie.200502000

  118. Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent- Tolerant Hydrogenation Catalysts via the Introduction of Chiral Aminoacid Spacers

    M. Skander, C. Malan, A. Ivanova, T.R. Ward

    Chem. Commun., 2005, 4815. 10.1039/b509015f

  119. Artificial Metalloenzymes Based on the Biotin- Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

    C. Letondor, N. Humbert, T.R. Ward

    Proc. Nat. Acad. Sci., 2005, 102, 4683. 10.1073/pnas.0409684102

  120. Artificial Metalloenzymes Based on the Biotin-Avidin Technology for the Enantioselective Hydrogenation of N-Protected Dehydroaminoacids

    T.R. Ward

    Chem. Eur. J., 2005, 11, 3798. 10.1002/chem.200590041

  121. Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes based on the Biotin-Avidin Technology

    C. M. Thomas, C. Letondor, N. Humbert, T.R. Ward

    J. Organomet.Chem., 2005, 690, 4488. 10.1016/j.jorganchem.2005.02.001

  122. Design of Artificial Metalloenzymes

    C.M. Thomas, T.R. Ward

    Appl. Organomet. Chem., 2005, 19, 35. 10.1002/aoc.726

  123. La chimie, une discipline à l’interface entre les sciences de la nature et les sciences de la matière (Leçon inaugurale)

    T.R. Ward

    2004. http://www2.unine.ch/files/content/sites/unine/files/Universite/Evenements/documents%20archives/LI03-04_ward.pdf

  124. Electrophoretic Behavior of Streptavidin Complexed to Biotinylated Probes: A Functional Screening Assay for Biotin-Binding Proteins

    N. Humbert, A. Zocchi, T.R. Ward

    Electrophoresis, 2005, 26, 47. 10.1002/elps.200406148

  125. Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis

    C.M. Thomas, T.R. Ward

    Chem. Soc. Rev., 2005, 34, 337. 10.1039/b314695m

  126. Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein-Accelerated Catalysis

    J. Collot, N. Humbert, M. Skander, G. Klein, T.R. Ward

    Organomet. Chem., 2004, 689, 4868. 10.1016/j.organchem.2004.09.032

  127. Artificial Metalloenzymes: (Strept)Avidin as Host for Enantioselective Hydrogenation Reactions Using Achiral Biotinylated Rhodium- Diphosphine Complexes

    J. Collot, N. Humbert, A. Zocchi, J. Gradinaru, M. Skander, A. Loosli, J. Sauser, G. Klein, T.R. Ward

    J. Am. Chem. Soc., 2004, 126, 14411. 10.1021/ja035545i

  128. Supramolecular cluster catalysis: facts and problems

    G. Süss-Fink, B. Therrien, L. Vieille-Petit, M. Tschan, V.B. Romakh, T.R. Ward, M. Dadras, G. Laurenczy

    J. Organomet. Chem., 2004, 689, 1362. 10.1016/j.jorganchem.2003.12.032

  129. Isolation and Single Crystal X-Ray Structure Analysis of the Catalyst-Substrate Host-Guest Complexes [C6H6⊂H3Ru{C6H5(CH2)nOH}(C6Me6)2(O)]+

    L. Vieille-Petit, B. Therrien, G. Süss-Fink, T.R. Ward

    J. Organomet. Chem., 2003, 684, 117. 10.1016/j.jorganchem.2003.11.002

  130. Efficient Expression and Mutation of Avidin and Streptavidin as Host Proteins for Enantioselective Catalysis

    A. Zocchi, N. Humbert, T. Berta, T.R. Ward

    Chimia, 2003, 57, 589. 10.2533/000942903777678821

  131. Exploiting the Second Coordination Sphere: Proteins as Host for Enantioselective Catalysis

    T.R. Ward, J. Collot, J. Gradinaru, A. Loosli, M. Skander, C. Letondor, E. Joseph, G. Klein

    Chimia, 2003, 57, 586. 10.2533/000942903777678722

  132. Expression and Purification of a Recombinant Avidin with a Lowered Isoelectric Point in Pichia pastoris

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    Protein Expres. Purif., 2003, 32, 167. 10.1016/j.pep.2003.09.001

  133. Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    J. Am. Chem. Soc., 2003, 125, 9030. 10.1021/ja035545i

  134. Protein Encapsulated Catalysts

    T.R. Ward

    German Patent Application, 2002, D 102 46 740.4

  135. Mechanistic in situ High-Pressure NMR Studies of Benzene Hydrogenation by Supramolecular Cluster Catalysis with [(h6-C6H6)(h6-C6Me6)2Ru3(m3-O)(m2-OH)(m2-H)2][BF4]

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    Adv. Synth. Catal., 2002, 344, 1073. 10.1002/1615-4169(200212)344:10<1073::AID-ADSC1073>3.0.CO;2-J

  136. Supramolecular Cluster Catalysis: A Case Study of Benzene Hydrogenation Catalyzed by a Cationic Triruthenium Cluster under Biphasic Conditions

    G. Süss-Fink, M. Faure, T.R. Ward

    Angew. Chem. Int. Ed., 2002, 41, 99. 10.1002/1521-3773(20020104)41:1<99::AID-ANIE99>3.0.CO;2-E

  137. Design and Synthesis Design and Synthesis of Compartmental Ligands and their Complexes for Catalytic Antibodies

    S. Duclos, H. Stoeckli-Evans, T.R. Ward

    Helv. Chim. Acta, 2001, 84, 3148. 10.1002/1522-2675(20011017)84:10<3148::AID-HLCA3148>3.0.CO;2-W

  138. Cobalt-Catalyzed Solution Phase Combinatorial Synthesis of Pyridines

    C. Brändli, T.R. Ward

    J. Comb. Chem., 2000, 2, 42. 10.1021/cc9900450

  139. An Iron-Based Molecular Redox Switch as a Model for Iron Release from Enterobactin via the Salicylate Binding Mode

    T.R. Ward, A. Lutz, S.L. Parel, J. Ensling, P. Gütlich, P. Buglyó, C. Orvig

    Inorg. Chem., 1999, 38, 5007. 10.1021/ic990225e

  140. Synthesis of a Configurationally Stable Three-Legged Piano-Stool Complex

    B. Therrien, A. König, T.R. Ward

    Organometallics, 1999, 18, 1565. 10.1021/om980949i

  141. From Catalyst Design to Molecular Devices: Theory and Experiments

    T.R. Ward

    1998 A. Werner Prize, Chimia, 1999, 53, 19.

  142. Synthesis of a Configurationally Stable Three-Legged Piano-Stool Complex

    B. Therrien, T.R. Ward

    Angew. Chem., 1999, 111, 418.

    Angew. Chem. Int. Ed., 1999, 38, 405. 10.1002/(SICI)1521-3773(19990201)38:3<405::AID-ANIE405>3.0.CO;2-0

  143. From Catalyst Design to Molecular Devices: Theory and Experiments

    T.R. Ward

    Habilitationsschrift, Universität Bern, 1998.

  144. Application of Transition Metal Catalysts in Organic Synthesis

    by L. Brandsma, S. F. Vasilevsky, H.D. Verkruijsse, Springer, Berlin 1998

    T.R. Ward

    book review in Angew. Chem. Int. Ed., 1998, 37, 2414.

  145. Libraries via Metathesis of Internal Olefins

    C. Brändli, T.R. Ward

    Helv. Chim. Acta, 1998, 81, 1616. 10.1002/(SICI)1522-2675(19980909)81:9<1616::AID-HLCA1616>3.0.CO;2-P

  146. Coordination Properties of Kläui's Tripodal Oxygen Donor towards Zirconium(IV)

    T.R. Ward, S. Duclos, B. Therrien, K. Schenk

    Organometallics, 1998, 17, 2490. 10.1021/om980088d

  147. Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration

    F. Gilardoni, J. Weber, H. Chermette, T.R. Ward

    J. Phys. Chem. A, 1998, 102, 3607. 10.1021/jp980521x

  148. Tripodal Dodecadentate Ligand with Salicylamide and Bipyridine Binding Sites for Iron(II) and Iron(III) Coordination

    A. Lutz, T.R. Ward

    Helv. Chim. Acta, 1998, 81, 207. 10.1002/hlca.19980810203

  149. Synthesis and Reactivity of Tethered η1:η6-Phosphino-Arene-Ruthenium Dichlorides

    B. Therrien, T.R. Ward, M. Pilkinton C. Hoffmann, F. Gilardoni, J. Weber

    Organometallics, 1998, 17, 330. 10.1021/om970735l

  150. Edge-Bridged Tetrahedral Geometry of Five Coordinate d0 Complexes, Relatives of the Bent [MCp2L3] Family: A Theoretical and Structure-Correlation Study

    T.R. Ward, H.B. Bürgi, F. Gilardoni, J. Weber

    J. Am. Chem. Soc., 1997, 119, 11974. 10.1021/ja972230s

  151. Electronic Asymmetry: Theoretical Background, Ligand Design and Applications

    T.R. Ward

    Chimia, 1997, 51, 238.

  152. Geometry of Coordinatively Unsaturated Two-Legged Piano Stool Complexes: A Theoretical Study

    T.R. Ward, O. Schafer, C. Daul, P. Hofmann

    Organometallics, 1997, 16, 3207. 10.1021/om9700369

  153. Synthesis of Salicylamide- and Bipyridine Containing Ligands for Iron(II) and Iron(III) Coordination

    A. Lutz, T.R. Ward, M. Albrecht

    Tetrahedron, 1996, 52, 12197. 10.1016/0040-4020(96)00724-7

  154. Regioselectivity of a Nucleophilic Attack on [Pd(allyl)(phosphine)(imine)] Complexes: A Theoretical Study

    T.R. Ward

    Organometallics, 1996, 15, 2836. 10.1021/om960158l

  155. 7-(2'-Deoxy-α-D-ribofuranosyl)-hypoxanthine

    J. Marfurt, E. Stulz, H.U. Trafelet, A. Zingg, C. Leumann, M. Hazenkamp, R. Judd, S. Schenker, G. Strouse, T.R. Ward, M. Förtsch, J. Hauser, H.B. Bürgi

    Acta Cryst., 1996, C52, 713. 10.1107/S0108270195012662

  156. Migratory Aptitude of the Zr-C Functionalities Bonded to a Macrocyclic Structure: Thermally- and Solvent Assisted Intra- and Inter-Molecular Migrations in Dialkyl(dibenzotetramethyltetraaza-annulene) Zirconium IV

    L. Giannini, E. Solari, S. De Angelis, T.R. Ward, C. Floriani, A. Chiesi-Villa, C. Rizzoli

    J. Am. Chem. Soc., 1995, 117, 5801. 10.1021/ja00126a019

  157. Adhesion of Rhodium Palladium and Platinum to Alumina, and Nitric Oxide Reactions on the Resulting Surfaces: Model Calculations

    T.R. Ward, P. Alemany, R. Hoffmann

    in Environmental Catalysis, ACS Symposium Series 552, J. N. Armor Ed., Washington D. C., 1993, 140. 10.1021/bk-1994-0552.ch011

  158. Adhesion and NO Reduction Properties of Rhodium, Palladium and Platinum Supported on Alumina: A Theoretical Analysis

    T.R. Ward, P. Alemany, R. Hoffmann

    J. Phys Chem., 1993, 97, 7691. 10.1021/j100131a044

  159. Coupling Nitrosyls as the First Step in the Reduction of NO on Metal Surfaces. The Special Role of Rhodium

    T.R. Ward, R. Hoffmann, M. Shelef

    Surf. Sci., 1993, 289, 85. 10.1016/0039-6028(93)90890-V

  160. Variations in C3 Symmetry: Coordination Chemistry and Catalytic Properties of fac-{Rh(TRIPOD)}-Complexes

    F. Karrer, A. Rindlisbacher, H.P. Buser, L.M. Venanzi, G.M. Ramos Tombo, T.R. Ward

    PhD Thesis Nr. 9513, ETH Zürich, 1991.

  161. Preparation of (2R,4S)-2-Ethyl-4-[(4-Phenoxy-Phenoxy)-Methyl]-Dioxolane as a Pesticide

    F. Karrer, A. Rindlisbacher, H.P. Buser, L.M. Venanzi, G.M. Ramos Tombo, T.R. Ward

    Eur. Pat. Appl., EP 501, 912.

  162. The Solution Structure of [(PPP*)RhH2(AuPPh3)3][PF6]2 Deduced by One- and Two-Dimensional 1H{31P} and 1H{103Rh} Double Resonance Techniques

    D. Imhof, H. Rüegger, L.M. Venanzi, T.R. Ward

    Magn. Reson. in Chem., 1991, 29, 73. 10.1002/mrc.1260291314

  163. Synthesis and X-Ray Crystal Structure of an Optically Pure Tripodal C3 Symmetric Tritertiary Phosphine Bearing Chirality on Phosphorus

    T.R. Ward, L.M. Venanzi, A. Albinati, F. Lianza, T. Gerfin, V. Gramlich, G.M. Ramos Tombo

    Helv. Chim. Acta, 1991, 74, 983. 10.1002/chin.199142248

  164. Rhodium Phosphine Complexes as Acetalization Catalysts

    J. Ott, G.M. Ramos Tombo, B. Schmid, L.M. Venanzi, G. Wang, T.R. Ward

    New J. Chem., 1990, 14, 495. 10.1002/chin.199108075

  165. A Versatile Rhodium Catalyst for Acetalization Reactions under Mild Conditions

    J. Ott, G.M. Ramos Tombo, B. Schmid, L.M. Venanzi, G. Wang, T.R. Ward

    Tetrahedron Lett., 1989, 30, 6151. 10.1002/hlca.19880710116

  166. Complexes with a Pincers. 2,6- Diphenylpyridine as Twofold-Deprotonated (C^N^C) Terdentate Ligands in C,C-trans-, and as Mono-Deprotonated (C^N) Chelate Ligand in Chiral C,C-cis-Complexes of Platinum(II) and Palladium(II)

    C. Cornioley-Deuschel, T.R. Ward, A. von Zelewsky

    Helv. Chim. Acta, 1988, 71, 130. 10.1002/hlca.19880710116