Publications

  1. Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network

    X. Guo, Y. Okamoto, M.R. Schreier, T.R. Ward, O.S. Wenger

    Chem. Sci., 2018, xx, xx. 10.1039/c8sc01561a

  2. A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

    Y. Okamoto, R. Kojima, F. Schwizer, E. Bartolami, T. Heinisch, S.Matile, M. Fussenegger, T.R. Ward

    Nat. Commun., 2018, 9, 1943. 10.1038/s41467-018-04440-0

  3. An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored within Streptavidin

    J. Zhao, D.G. Bachmann, M. Lenz, D.G. Gillingham, T.R. Ward

    Catal. Sci. Technol., 2018, 8, 2294. 10.1039/c8cy00646f

  4. Photo‐Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin‐Streptavidin Technology

    S.G. Keller, B. Probst, T. Heinisch, R. Alberto, Roger, T.R. Ward

    Helv. Chim. Acta, 2018, 101, e1800036. 10.1002/hlca.201800036

  5. Streptavidin‐Enzyme Linked Aggregates for the One‐Step Assembly and Purification of Enzyme Cascades

    H. Mallin, T.R. Ward

    ChemCatChem, 2018, xx, xx. 10.1002/cctc.201800162

  6. Hybrid Catalysts for C—H Activation and Other X—H Insertion Reactions

    T.R. Ward, M.M. Pellizzoni

    in Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications, 2018, 9, 253, M. Diéguez, J.-E. Bäckvall, O. Pàmies Eds., Wiley-VCH.

  7. In Vivo Catalyzed New-to-Nature Reactions

    J.G. Rebelein, T.R. Ward

    Curr. Opin. Biotechnol., 2018, 53, 106. 10.1016/j.copbio.2017.12.008

  8. Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

    M.M. Pellizzoni, F. Schwizer, C.W. Wood, V. Sabatino, Y. Cotelle, S. Matile, D.N. Woolfson, T.R. Ward

    ACS Catal., 2018, 8, 1476. 10.1021/acscatal.7b03773

  9. Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review

    F. Christoffel, T.R. Ward

    Catal. Lett., 2018, 148, 489. 10.1007/s10562-017-2285-0

  10. Directed Evolution of Artificial Imine Reductase

    M. Hestericová, T. Heinisch, L. Alonso-Cotchico, J-D. Maréchal, P. Vidossich, T.R. Ward

    Angew. Chem. Int. Ed., 2018, 57, 1863. 10.1002/anie.201711016

  11. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies

    F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M.M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J.C. Lewis, T.R. Ward

    Chem. Rev., 2018, 118, 142. 10.1021/acs.chemrev.7b00014

  12. Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application

    C. Seck, M.D. Mbaye, S. Coufourier, A. Lator, J-F. Lohier, A. Poater, T.R. Ward, S. Gaillard, J-L. Renaud

    ChemCatChem, 2017, 9, 4410. 10.1002/cctc.201701241

  13. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

    M. Jeschek, S. Panke, T.R. Ward

    Trends Biotechnol., 2017, 36, 60. 10.1016/j.tibtech.2017.10.003

  14. Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation

    S.G. Keller, A. Pannwitz, H. Mallin, O. Wenger, T.R. Ward

    Chem. Eur. J., 2017, 23, 18019. 10.1002/chem.201703885

  15. Supramolecular Enzyme Mimics

    Y. Okamoto, T.R. Ward

    in Comprehensive Supramolecular Chemistry II, 2017, 4, 459, J.L. Atwood Ed., Elsevier. 10.1016/B978-0-12-409547-2.12551-X

  16. Transfer Hydrogenation Catalyzed by Organometallic Complexes Using NADH as a Reductant in a Biochemical Context

    Y. Okamoto, T.R. Ward

    Biochemistry, 2017, 56, 5223. 10.1021/acs.biochem.7b00809

  17. Cross-Regulation of an Artificial Metalloenzyme

    Y. Okamoto, T.R. Ward

    Angew. Chem. Int. Ed., 2017, 56, 10156. 10.1002/anie.201702181

  18. Biotin-Independent Strains of Escherichia coli for Enhanced Streptavidin Production

    M. Jeschek, M.O. Bahls, V. Schneider, P. Marlière, T.R. Ward, S. Panke

    Metab. Eng., 2017, 40, 33. 10.1016/j.ymben.2016.12.013

  19. Artificial Metalloenzymes

    C. Trindler, T.R. Ward

    Effects of Nanoconfinement on Catalysis, 2017, 49. 10.1007/978-3-319-50207-6_3

  20. Directed Evolution of Iridium-Substituted Myoglobin Affords Versatile Artificial Metalloenzymes for Enantioselective C−C Bond-Forming Reactions

    T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 14909. 10.1002/anie.201607222

  21. Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

    M. Jeschek, R. Reuter, T. Heinisch, C. Trindler, J. Klehr, S. Panke, T.R. Ward

    Nature, 2016, 537, 661. 10.1038/nature19114

  22. Periplasmic Screening for Artificial Metalloenzymes

    M. Jeschek, S. Panke, T.R. Ward

    Methods Enzymol., 2016, 580, 539. 10.1016/bs.mie.2016.05.037

  23. Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Challenges and Opportunities

    T. Heinisch, T.R. Ward

    Acc. Chem. Res., 2016, 49, 1711. 10.1021/acs.accounts.6b00235

  24. Upregulation of an Artificial Zymogen by Proteolysis

    Z. Liu, V. Lebrun, T. Kitanosono, H. Mallin, V. Köhler, D. Häussinger, D. Hilvert, S. Kobayashi, T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 11587. 10.1002/anie.201605010

  25. Anion-π Enzymes

    Y. Cotelle, V. Lebrun, N. Sakai, T.R. Ward, S. Matile

    ACS Cent. Sci., 2016, 2, 388. 10.1021/acscentsci.6b00097

  26. Light-Driven Electron Injection from a Biotinylated Triarylamine Donor to [Ru(diimine)3](2+)-Labeled Streptavidin

    S.G. Keller, A. Pannwitz, F. Schwizer, J. Klehr, O.S. Wenger, T.R. Ward

    Org. Biomol. Chem., 2016, 14, 7197. 10.1039/c6ob01273f

  27. Modular Artificial Cupredoxins

    S.I. Mann, T. Heinisch, A.C. Weitz, M.P. Hendrich, T.R. Ward, A.S. Borovik

    J. Am. Chem. Soc., 2016, 138, 9073. 10.1021/jacs.6b05428

  28. Interfacing Functional Systems

    Y. Cotelle, N. Chuard, S. Lascano, V. Lebrun, R. Wehlauch, N. Bohni, S. Lörcher, V. Postupalenko, S.T. Reddy, W. Meier, C.G. Palivan, K. Gademann, T.R. Ward, S. Matile

    Chimia, 2016, 70, 418. 10.2533/chimia.2016.418

  29. Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions

    T.K. Hyster, T.R. Ward

    Angew. Chem. Int. Ed., 2016, 55, 7344. 10.1002/anie.201508816

  30. Immobilization of an Artificial Imine Reductase within Silica Nanoparticles Improves its Performance

    M. Hestericová, M.R. Correro, M. Lenz, P.F. Corvini, P. Shahgaldian, T.R. Ward

    Chem. Commun., 2016, 52, 9462. 10.1039/c6cc04604e

  31. From Photodriven Charge Accumulation to Fueling Enzyme Cascades in Molecular Factories

    Y. Okamoto, T.R. Ward, O.S. Wenger

    Chimia, 2016, 70, 395. 10.2533/chimia.2016.395

  32. Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water

    A.Chatterjee, T.R. Ward

    Catal. Lett., 2016, 146, 820. 10.1007/s10562-016-1707-8

  33. Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

    H. Mallin, M. Hestericová, R. Reuter, T.R. Ward

    Nat. Protoc., 2016, 11, 835. 10.1038/nprot.2016.019

  34. Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

    Y. Okamoto, V. Köhler, C.E. Paul, F. Hollmann, T.R. Ward

    ACS Catal., 2016, 6, 3553. 10.1021/acscatal.6b00258

  35. An NAD(P)H-dependent Artificial Transfer Hydrogenase for Multi-enzymatic Cascades

    Y. Okamoto, V. Köhler, T.R. Ward

    J. Am. Chem. Soc., 2016, 138, 5781. 10.1021/jacs.6b02470

  36. Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

    D.S. Mérel, S. Gaillard, T.R. Ward, J.L. Renaud

    Catal. Lett., 2016, 146, 564. 10.1007/s10562-015-1681-6

  37. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces

    Y. Cotelle, S. Benz, A.J. Avestro, T.R. Ward, N. Sakai, S. Matile

    Angew. Chem. Int. Ed., 2016, 55, 4275. 10.1002/anie.201600831

  38. Synthetic Cascades by Combining Artificial Metalloenzymes with Monoamine Oxidases (MAO-N)

    M. Dürrenberger, V. Köhler, Y.M. Wilson, D. Ghislieri, L. Knörr, N.J. Turner, T.R. Ward

    in Practical Methods in Biocatalysis and Biotransformations, 2016, 3, 213, J. Whitthal, P. Sutton, W. Kroutil Eds., Wiley

  39. Streptavidin based Artificial Metallo-annulase for the Enantioselective Synthesis of Dihydroisoquinolones

    T.K. Hyster, L. Knörr, T. Rovis, T.R. Ward

    in Practical Methods in Biocatalysis and Biotransformations, 2016, 3, 101, J. Whitthal, P. Sutton, W. Kroutil Eds., Wiley

  40. N-Heterocyclic Carbene Ligands Bearing a Naphthoquinone Appendage: Synthesis and Coordination Chemistry

    E.A. Miłopolska, M. Kuss-Petermann, M. Neuburger, O. Wenger, T.R. Ward

    Polyhedron, 2016, 103, 261. 10.1016/j.poly.2015.04.019

  41. An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology

    A. Chatterjee, H. Mallin, J. Klehr, J. Vallapurackal, A.D. Finke, L. Vera, M. Marsh, T.R. Ward

    Chem. Sci., 2016, 7, 673. 10.1039/c5sc03116h

  42. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design

    T. Heinisch, M. Pellizzoni, M. Dürrenberger, C.E. Tinberg, V. Köhler, J. Klehr, T. Schirmer, D. Baker, T.R. Ward

    J. Am. Chem. Soc., 2015, 137, 10414. 10.1021/jacs.5b06622

  43. Profluorescent Substrates for the Screening of Olefin Metathesis Catalysts

    R. Reuter, T.R. Ward

    Beilstein J. Org. Chem., 2015, 11, 1886. 10.3762/bjoc.11.203

  44. Latest Developments in Metalloenzyme Design and Repurposing

    T. Heinisch, T.R. Ward

    Eur. J. Inorg. Chem., 2015, 21, 3406. 10.1002/ejic.201500408

  45. Enzyme Repurposing of a Hydrolase as an Emergent Peroxidase upon Metal Binding

    N. Fujieda, J. Schätti, E. Stuttfeld, K. Ohkubo, T. Maier, S. Fukuzumi, T.R. Ward

    Chem. Sci., 2015, 6, 4060. 10.1039/c5sc01065a

  46. Carbonic Anhydrase II as Host Protein for the Creation of a Biocompatible Artificial Metathesase

    J. Zhao, A. Kajetanowicz, T.R. Ward

    Org. Biomol. Chem., 2015, 13, 5652. 10.1039/C5OB00428D

  47. Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H

    T. Quinto, V. Köhler, D. Häussinger, T.R. Ward

    Org. Biomol. Chem., 2015, 13, 357. 10.1039/C4OB02071E

  48. D(+)-Biotin

    R. Reuter, T.R. Ward

    in Encyclopedia of Reagents for Organic Synthesis, 2014. 10.1002/047084289X.rn01826

  49. Evaluation of the Formate Dehydrogenase Activity of Three-Legged Pianostool Complexes in Dilute Aqueous Solution

    S. Keller, M. Ringenberg, D. Häussinger, T.R. Ward

    Eur. J. Inorg. Chem., 2014, 34, 5860. 10.1002/ejic.201402348

  50. Concurrent Cross Metathesis and Enzymatic Oxidation: Enabling Off Equilibrium Transformations

    V. Koehler, T.R. Ward

    ChemCatChem, 2014, 6, 2191. 10.1002/cctc.201402150

  51. Method for neutralizing detrimental effects of thiol-bearing compounds on metal catalysts

    Y.M. Wilson, M. Dürrenberger, E. Nogueira, T.R. Ward

    European Patent Application, 2014, EP 14170960.0 - 1352.

  52. Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts

    Y.M. Wilson, M. Dürrenberger, E. Nogueira, T.R. Ward

    J. Am. Chem. Soc., 2014, 136, 8928. 10.1021/ja500613n

  53. Recent Achievements in the Design and Engineering of Artificial Metalloenzymes

    M. Dürrenberger T.R. Ward

    Curr. Op. Chem. Biol., 2014, 19, 99. 10.1016/j.cbpa.2014.01.018

  54. An Artificial Imine Reductase Based on the RNAse S Scaffold

    M. Genz, V. Koehler, M. Krauss, D. Singer, R. Hoffmann, T.R. Ward, N. Sträter

    ChemCatChem, 2014, 6, 736. 10.1002/cctc.201300995

  55. Recent Trends in Biomimetic NADH Regeneration

    T. Quinto, V. Koehler, T.R. Ward

    Top. Catal., 2014, 57, 321. 10.1007/s11244-013-0187-y

  56. Structural, Kinetic and Docking Studies of Artificial Imine Reductases Based on the Biotin-Streptavidin Technology: An Induced Lock-and-Key Hypothesis

    V. Munoz-Robles, M. Dürrenberger, A. Lledos, T.R. Ward, J.D. Maréchal

    J. Am. Chem. Soc., 2014, 136, 15676. http://pubs.acs.org/doi/abs/10.1021/ja508258t

  57. Biotinylated Metathesis Catalysts: Synthesis and Performance in Ring Closing Metathesis

    A. Kajetanowicz, A. Chatterjee, R. Reuter, T.R. Ward

    Catal. Lett., 2014, 144, 373. 10.1007/s10562-013-1179-z

  58. Novel Process to Produce Streptavidin and Other Biotin-binding Proteins

    M. Jeschek, T.R. Ward, S. Panke

    European Patent Application, 2014, EP13178560.2.

  59. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin-Streptavidin Technology

    T. Quinto, F. Schwizer, M.J. Zimbron, A. Morina, V. Köhler, T.R. Ward

    ChemCatChem, 2014, 6, 1010. 10.1002/cctc.201300825

  60. Computational Insights on an Artificial Imine Reductase Based on the Biotin– Streptavidin Technology

    V. Munoz-Robles, P. Vidossich, A. Lledos, T.R. Ward, J.D. Maréchal

    ACS Catal., 2014, 4, 833. 10.1021/cs400921n

  61. Enantioselective Catalysis with Recombinant Wild-Type Streptavidin Secreted at High-Level by Pichia Pastoris

    E. Nogueira, T. Schleier, M. Dürrenberger, K. Ballmer-Hofer, T.R. Ward, R. Jaussi

    Prot. Expr. Purif., 2014, 93, 54. 10.1016/j.pep.2013.10.015

  62. Biomacromolecules as Ligands for Artificial Metalloenzymes

    D. Hamels, T.R. Ward

    in Compr. Inorg. Chem II., 2013, 6, 737, J. Reedijk, K. Poeppelmeier Eds., Elsevier. 10.1016/B978-0-08-097774-4.00626-4

  63. Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on the Biotin- Streptavidin Technology

    F. Schwizer, V. Köhler M. Dürrenberger, L. Knörr, T.R. Ward

    ACS Catalysis, 2013, 3, 1752. 10.1021/cs400428r

  64. Human Carbonic Anhydrase II as Host Protein for the Creation of Artificial Metalloenzymes: The Asymmetric Transfer Hydrogenation of Imines

    F. Monnard, E. Nogueira, T. Heinisch, T. Schirmer, T.R. Ward

    Chem. Sci., 2013, 4, 3269. 10.1039/c3sc51065d

  65. Metal-Catalyzed Organic Transformations inside a Protein Scaffold Using Artificial Metalloenzymes

    V.K.K. Praneeth, T.R. Ward

    in Coordination Chemistry in Protein Cages: Principles, Design, and Applications, 2013, 203, T. Ueno, Y. Watanabe Eds., Wiley-VCH. 10.1002/9781118571811.ch8

  66. Scoring Multipole Electrostatics in Condensed-Phase Atomistic Simulations

    T. Bereau, C. Kramer, F. Monnard, E. Nogueira, T.R. Ward, M. Meuwly

    J. Phys. Chem. B, 2013, 117, 5460. 10.1021/jp400593c

  67. Towards a Broadly Applicable Force Field for d6-piano Stool Complexes

    M. Schmid, T.R. Ward, M. Meuwly

    J. Chem. Theory Comput., 2013, 9, 2313. 10.1021/ct301080d

  68. A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes based on the Biotin-Streptavidin Technology

    J.M. Zimbron, T. Heinisch, M. Schmid, D. Hamels, E. S. Nogueira, T. Schirmer, T.R. Ward

    J. Am. Chem. Soc., 2013, 135, 5384. 10.1021/ja309974s

  69. Author Profile

    T.R. Ward

    Angew. Chem. Int. Ed., 2013, 52, 4722. 10.1002/anie.201208430

  70. Fluorescence-Based Assay for the Optimization of Artificial Transfer Hydrogenase Activity within a Biocompatible Compartment

    T. Heinisch, K. Langowska, P. Tanner, J.L. Reymond, W. Meier, C. Palivan, T.R. Ward

    ChemCatChem, 2013, 3, 720. 10.1002/cctc.201200834

  71. New Synthetic Cascades by Combining Biocatalysts with Artificial Metalloenzymes

    V. Köhler, Y.M. Wilson, M. Dürrenberger, D. Ghislieri, E. Churakova, T. Quinto, L. Knörr, D. Häussinger, F. Hollmann, N.J. Turner, T.R. Ward

    Nat. Chem., 2013, 5, 93. 10.1038/nchem.1498

  72. Organometallic Chemistry in Protein Scaffolds

    Y.M. Wilson, M. Dürrenberger, T.R. Ward

    in Protein Engineering Handbook, 2012, 3, 215, S. Lütz, U.T. Bornscheuer Eds., Wiley-VCH.

  73. Biotinylated Rh(III) Complexes in Engineered Streptavidin for Rate Enhanced Asymmetric C-H Activation

    T.K. Hyster, L. Knörr, T.R. Ward, T. Rovis

    Science, 2012, 338, 500. 10.1126/science.1226132

  74. Redox Active Ligands in Catalysis

    V.K.K. Praneeth, M.R. Ringenberg, T.R. Ward

    Angewandte Chem. Int. Ed., 2012, 51, 10228. 10.1002/anie.201204100

  75. Identification of Two-Histidine One-Carboxylate Binding Motifs in Proteins Amenable to Facial Coordination to Metals

    B. Amrein, M. Schmid, F. Gilardoni, F. Seebeck, T.R. Ward

    Metallomics, 2012, 4, 379. 10.1039/c2mt20010d

  76. Chemically Programmed Supramolecular Assembly of Hemoprotein and Streptavidin with Alternating Alignment

    K. Oohora, S. Burazerovic, A. Onoda, Y.M. Wilson, T.R. Ward, T. Hayashi

    Angew. Chem. Int. Ed., 2012, 51, 3818. 10.1002/anie.201107067

  77. Arylsulfonamides as Carbonic Anhydrase Inhibitors: Theory and Validation

    M. Schmid, E. Nogueira, F. Monnard, T.R. Ward, M. Meuwly

    Chem. Sci., 2012, 3, 690. 10.1039/c1sc00628b

  78. Enantioselective Hybrid Catalysts

    A. Pordea, T.R. Ward

    in Comprehensive Chirality, 2012, 7, 516, N.J. Turner Ed., Elsevier. 10.1039/c1sc00628b

  79. A Process for the Hydrogenation of Ketoesters

    M. Bicker, M.A. Caraucan Davilla, G. Heckmann, L. Farpour, H.G. Nedden, C. Malan, J. Pierron, D. Veghini, T.R. Ward, A. Zanotti-Gerosa

    Patent Application, 2011, PCT/EP2011/002323, WO 2011/141160

  80. An Artificial Metalloenzyme for Olefin Metathesis

    M. Clemens, D. Gillingham, T.R. Ward, D. Hilvert

    Chem. Commun., 2011, 47, 12068. 10.1039/c1cc15005g

  81. Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-Avidin Technology

    C. Lo, M.R. Ringenberg, D. Gnandt, Y. Wilson, T.R. Ward

    Chem. Commun., 2011, 47, 12065. 10.1039/c1cc15004a

  82. Human Carbonic Anhydrase II as a Host for Piano-Stool Complexes bearing a Sulfonamide Anchor

    F. Monnard, E. Nogueira, T. Heinisch, T. Schirmer, T.R. Ward

    Chem. Commun., 2011, 47, 8238. 10.1039/c1cc10345h

  83. OsO4·Streptavidin: a Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins

    V. Köhler, J. Mao, T. Heinisch, A. Pordea, A. Sardo, Y.M. Wilson, L. Knörr, M. Creus, J.C. Prost, T. Schirmer, T.R. Ward

    Angew. Chem. Int. Ed., 2011, 50, 10863. 10.1002/anie.201103632

  84. Merging the Best of Two Worlds: Artificial Metalloenzymes for Enantioselective Catalysis

    M.R. Ringenberg, T.R. Ward

    Chem. Commun., 2011, 8470. 10.1039/c1cc11592h

  85. Burkavidin: a Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia pseudomallei

    A. Sardo, T. Wohlschlager, C. Lo, H. Zoller, T.R. Ward, M. Creus

    Prot. Expr. Purif., 2011, 77, 131. 10.1016/j.pep.2011.01.003

  86. Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

    M. Dürrenberger, T. Heinisch, Y.M. Wilson, T. Rossel, E. Nogueira, L. Knörr, A. Mutschler, K. Kersten, M.J. Zimbron, J. Pierron, T. Schirmer, T.R. Ward

    Angew. Chem. Int. Ed., 2011, 50, 3026. 10.1002/anie.201007820

  87. Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects

    M. Creus, T.R. Ward

    in Progress Inorg. Chem., 2011, 57, 203, K.D. Karlin Ed., Wiley. 10.1002/9781118148235.ch4

  88. Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantio-selective Catalysis and Beyond

    T.R. Ward

    Acc. Chem. Res., 2011, 44, 47. 10.1021/ar100099u

  89. Protein-Based Hybrid Catalysts: Design and Evolution

    V. Köhler, Y. Wilson, C. Lo, A. Sardo, T.R. Ward

    Curr. Op. Biotech., 2010, 21, 744. 10.1016/j.copbio.2010.09.004

  90. Flexibility of a Biotinylated Ligand in Artificial Metalloenzymes Based on Streptavidin — an Insight from Molecular Dynamics Simulations with Classical and Ab Initio Force Fields

    J. Panek, T.R. Ward, A. Jezierska-Mazzarello, M. Novic

    J. Comput. Aid. Mol. Des., 2010, 24, 719. 10.1007/s10822-010-9369-x

  91. Chemo-genetic optimization of DNA recognition by metallodrugs using a presenter protein strategy

    J.M. Zimbron, A. Sardo, T. Heinisch, T. Wohlschlager, J. Gradinaru, C. Massa, T. Schirmer, M. Creus, T.R. Ward

    Chem. Eur. J., 2010, 16, 12883. 10.1002/chem.201001573

  92. Proteins as Host for Enantioselective Catalysis: Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

    J. Mao, T.R. Ward

    in Molecular Encapsulation: Organic Reactions in Constrained Systems, 2010, 361, U. Brinker, J.-L. Mieusset Eds., Wiley. 10.1002/9780470664872.ch13

  93. Design Strategies for the Creation of Artificial Metalloenzymes

    T. Heinisch, T.R. Ward

    Curr. Opin. Chem. Biol., 2010, 14, 184. 10.1016/j.cbpa.2009.11.026

  94. Design of a Functional Nitric Oxide Reductase within a Myoglobin Scaffold

    V. Köhler, T.R. Ward

    ChemBioChem, 2010, 11, 1049. 10.1002/cbic.201000093

  95. Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin- Streptavidin Technology by Combinations of Point Mutations

    A. Pordea, M. Creus, C. Letondor, A. Ivanova, T.R. Ward

    Inorg. Chim. Acta, 2010, 363, 601. 10.1016/j.ica.2009.02.001

  96. Artificial Metalloenzymes: Combining the Best Features of Homogeneous and Enzymatic Catalysis

    A. Pordea, T.R. Ward

    Synlett, 2009, 3225. 10.1055/s-0029-1218305

  97. Site-Dependent Excited-State Dynamics of a Fluorescent Probe Bound to Avidin and Streptavidin Investigated by Ultrafast Spectroscopy and MD Simulations

    A. Fürstenberg, O. Kel, J. Gradinaru, T.R. Ward, D. Emery, G. Bollot, J. Mareda, E. Vauthey

    ChemPhysChem, 2009, 10, 1517. 10.1002/cphc.200900132

  98. Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

    J. Steinreiber, T.R. Ward

    in Bioinspired Catalysis: Top. Organomet. Chem., 2009, 25, 93, T.R. Ward Ed., Springer-Verlag. 10.1007/978-3-540-87757-8_5

  99. Incorporation of Biotinylated Manganese Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

    A. Pordea, D. Mathis, T.R. Ward

    J. Organomet. Chem., 2009, 694, 930. 10.1016/j.jorganchem.2008.11.023

  100. Effects of Tryptophan Residue Fluorination on Streptavidin Stability and Biotin-Streptavidin Interactions via Molecular Dynamics Simulations

    J. Panek, T.R. Ward, A. Jerierska, M. Novic

    J. Mol. Model., 2009, 15, 257. 10.1007/s00894-008-0382-0

  101. Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

    J. Mao, T.R. Ward

    Chimia, 2008, 62, 956. 10.2533/chimia.2008.956

  102. Artificial Enzymes Made to Order: Combination of Rational Design and Directed Evolution

    T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 7802. 10.1002/anie.200802865

  103. Chemogenetic Protein Engineering: An Efficient Tool for the Optimization of Artificial Metalloenzymes

    A. Pordea, T.R. Ward

    Chem. Commun., 2008, 4239. 10.1039/b806652c

  104. Artificial Metalloenzymes for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

    A. Pordea, M. Creus, J. Panek, C. Duboc, D. Mathis, M. Novic, T.R. Ward

    J. Am. Chem. Soc., 2008, 130, 8085. 10.1021/ja8017219

  105. X-ray Structure and Designed Evolution fo an Artificial Transfer Hydrogenase

    M. Creus, A. Pordea, T. Rossel, A. Sardo, C. Letondor, A. Ivanova, I. LeTrong, R.E. Stenkamp, T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 1400. 10.1002/anie.200704865

  106. Artificial Metalloenzymes for Asymmetric Allylic Alkylation Based on the Biotin-Avidin Technology

    J. Pierron, C. Malan, M. Creus, J. Gradinaru, I. Hafner, A. Ivanova, A. Sardo, T.R. Ward

    Angew. Chem. Int. Ed., 2008, 47, 701. 10.1002/anie.200703159

  107. Artificial Metalloenzymes as Selective Catalysts in Aqueous Media

    J. Steinreiber, T.R. Ward

    Coord. Chem. Rev., 2008, 252, 751. 10.1016/j.ccr.2007.09.016

  108. Label-Free Detection of Single Protein Molecules and Protein-Protein Interactions Using Synthetic Nanopores

    A. Han, M. Creus, G. Schürmann, V. Linder, T.R. Ward, N. de Rooij, U. Stauffer

    Anal. Chem., 2008, 80, 4651. 10.1021/ac7025207

  109. Trivalent Phosphorous Compounds in Asymmetric Catalysis; Synthesis and Applications

    C. Malan, T.R. Ward

    in Trivalent Phosphorous Compounds in Asymmetric Catalysis; Synthesis and Applications, 2008, 3, 1103, A. Börner Ed., Wiley-VCH.

  110. High Level Expression of Mature Streptavidin in E. coli

    N. Humbert, A. Zocchi, J.M. Neuhaus, P. Schürmann, T.R. Ward

    in Methods in Molecular Biology: Avidin-Biotin Techniques, 2008, 418, 101, R.J. McMahon Ed., Humana Press Inc. 10.1007/978-1-59745-579-4_9

  111. Functionality Screen of Streptavidin Mutants by Non- Denaturing SDS-PAGE Using Biotin-4-Fluorescein

    N. Humbert, T.R. Ward

    in Methods in Molecular Biology: Avidin-Biotin Techniques, 2008, 418, 63, R.J. McMahon Ed., Humana Press Inc. 10.1007/978-1-59745-579-4_6

  112. Counter Propagation Artificial Neural Networks Modeling of Enantioselectivity of Artificial Metalloenzymes

    S. Mazurek, T.R. Ward, M. Novic

    Mol. Divers., 2007, 11, 141. 10.1007/s11030-008-9068-x

  113. Designed Evolution of Artificial Metalloenzymes: Protein Catalysts Made to Order

    M. Creus, T.R. Ward

    Org. Biomol. Chem., 2007, 5, 1835. 10.1039/b702068f

  114. Hierarchical Self-Assembly of One Dimensional Streptavidin Bundles as Collagen Mimitics for the Biomineralization of Calcite

    S. Burazerovic, J. Gradinaru, J. Pierron T.R. Ward

    Angew. Chem. Int. Ed., 2007, 46, 5510. 10.1002/anie.200701080

  115. Second Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Activity, Stability and Selectivity by Introduction of Enantiopure Amino Acid Spacers

    U.E. Rusbandi, C. Lo, M. Skander, A. Ivanova, M. Creus, N. Humbert, T.R. Ward

    Adv. Synth. Catal., 2007, 349, 1923. 10.1002/adsc.200700022

  116. Second Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Selectivity and Organic Solvent Tolerance by Introduction of an (R)-Proline Spacer

    U.E. Rusbandi, M. Skander, A. Ivanova, C.M. Malan, T.R. Ward

    C. R. Chim., 2007, 10, 678. 10.1016/j.crci.2007.02.020

  117. Artificial Metalloenzymes for Enantioselective Catalysis: Recent Advances

    C. Letondor, T.R. Ward

    ChemBioChem, 2006, 7, 1845. 10.1002/cbic.200600264

  118. Artificial Transfer Hydrogenases Based on the Biotin-Avidin Technology: Fine Tuning of the Active Site by Saturation Mutagenesis of the Host Protein

    C. Letondor, A. Pordea, N. Humbert, A. Ivanova, S. Mazurek, M. Novic, T.R. Ward

    J. Am. Chem. Soc., 2006, 128, 8320. 10.1021/ja061580o

  119. Inter- and Intramolecular Interactions Between Transition Metal Complexes in Supramolcular Systems

    S. Delahaye, C. Loosli, S.X. Liu, S. Decurtins, G. Labat, A. Neels, A. Loosli, T.R. Ward, A. Hauser

    Adv. Func. Mat., 2006, 16, 286. 10.1002/adfm.200500329

  120. Crystallographic Analysis of a Full-Length Streptavidin with Its C-terminal Peptide Bound in the Biotin-Binding Site

    I. Le Trong, N. Humbert, T.R. Ward, R.E. Stenkamp

    J. Mol.Biol., 2006, 356, 738. 10.1016/j.jmb.2005.11.086

  121. (Strept)avidin as Host for Biotinylated Coordination Complexes: Stability, Chiral Discrimination and Cooperativity

    A. Loosli, U.E. Rusbandi, J. Gradinaru, K. Bernauer, C.W. Schlaepfer, M. Meyer, S. Mazurek, M. Novic, T.R.Ward

    Inorg. Chem., 2006, 45, 660. 10.1021/ic051405t

  122. Synthesis and Characterization of Tetrahedral Ru3O Clusters with Intrinsic Framework Chirality: A Chiral Probe of the Intact Cluster Catalysis Concept

    L. Vieille-Petit, G. Süss-Fink, B. Therrien, T.R. Ward, H. Stœckli-Evans, G. Labat, L. Karmazin-Brelot, A. Neels, T. Bürgi, R.G. Finke, C.M. Hagen

    Organometallics, 2005, 24, 6104. 10.1021/om050643t

  123. Tailoring the Active Site of Chemzymes Using a Chemogenetic Optimization Procedure: Towards Substrate-Specific Artificial Hydrogenases Based on the Biotin- Avidin Technology

    G. Klein, N. Humbert, J. Gradinaru, A. Ivanova, F. Gilardoni, U.E. Rusbandi, T.R. Ward

    Angew. Chem. Int. Ed., 2005, 44, 7764. 10.1002/anie.200502000

  124. Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent- Tolerant Hydrogenation Catalysts via the Introduction of Chiral Aminoacid Spacers

    M. Skander, C. Malan, A. Ivanova, T.R. Ward

    Chem. Commun., 2005, 4815. 10.1039/b509015f

  125. Artificial Metalloenzymes Based on the Biotin- Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

    C. Letondor, N. Humbert, T.R. Ward

    Proc. Nat. Acad. Sci., 2005, 102, 4683. 10.1073/pnas.0409684102

  126. Artificial Metalloenzymes Based on the Biotin-Avidin Technology for the Enantioselective Hydrogenation of N-Protected Dehydroaminoacids

    T.R. Ward

    Chem. Eur. J., 2005, 11, 3798. 10.1002/chem.200590041

  127. Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin-Avidin Technology

    C. M. Thomas, C. Letondor, N. Humbert, T.R. Ward

    J. Organomet.Chem., 2005, 690, 4488. 10.1016/j.jorganchem.2005.02.001

  128. Design of Artificial Metalloenzymes

    C.M. Thomas, T.R. Ward

    Appl. Organomet. Chem., 2005, 19, 35. 10.1002/aoc.726

  129. La chimie, une discipline à l’interface entre les sciences de la nature et les sciences de la matière (Leçon inaugurale)

    T.R. Ward

    2004. http://www2.unine.ch/files/content/sites/unine/files/Universite/Evenements/documents%20archives/LI03-04_ward.pdf

  130. Electrophoretic Behavior of Streptavidin Complexed to Biotinylated Probes: A Functional Screening Assay for Biotin-Binding Proteins

    N. Humbert, A. Zocchi, T.R. Ward

    Electrophoresis, 2005, 26, 47. 10.1002/elps.200406148

  131. Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis

    C.M. Thomas, T.R. Ward

    Chem. Soc. Rev., 2005, 34, 337. 10.1039/b314695m

  132. Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein-Accelerated Catalysis

    J. Collot, N. Humbert, M. Skander, G. Klein, T.R. Ward

    Organomet. Chem., 2004, 689, 4868. 10.1016/j.organchem.2004.09.032

  133. Artificial Metalloenzymes: (Strept)Avidin as Host for Enantioselective Hydrogenation Reactions Using Achiral Biotinylated Rhodium- Diphosphine Complexes

    J. Collot, N. Humbert, A. Zocchi, J. Gradinaru, M. Skander, A. Loosli, J. Sauser, G. Klein, T.R. Ward

    J. Am. Chem. Soc., 2004, 126, 14411. 10.1021/ja035545i

  134. Supramolecular Cluster Catalysis: Facts and Problems

    G. Süss-Fink, B. Therrien, L. Vieille-Petit, M. Tschan, V.B. Romakh, T.R. Ward, M. Dadras, G. Laurenczy

    J. Organomet. Chem., 2004, 689, 1362. 10.1016/j.jorganchem.2003.12.032

  135. Isolation and Single Crystal X-Ray Structure Analysis of the Catalyst-Substrate Host-Guest Complexes [C6H6⊂H3Ru{C6H5(CH2)nOH}(C6Me6)2(O)]+

    L. Vieille-Petit, B. Therrien, G. Süss-Fink, T.R. Ward

    J. Organomet. Chem., 2003, 684, 117. 10.1016/j.jorganchem.2003.11.002

  136. Efficient Expression and Mutation of Avidin and Streptavidin as Host Proteins for Enantioselective Catalysis

    A. Zocchi, N. Humbert, T. Berta, T.R. Ward

    Chimia, 2003, 57, 589. 10.2533/000942903777678821

  137. Exploiting the Second Coordination Sphere: Proteins as Host for Enantioselective Catalysis

    T.R. Ward, J. Collot, J. Gradinaru, A. Loosli, M. Skander, C. Letondor, E. Joseph, G. Klein

    Chimia, 2003, 57, 586. 10.2533/000942903777678722

  138. Expression and Purification of a Recombinant Avidin with a Lowered Isoelectric Point in Pichia pastoris

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    Protein Expres. Purif., 2003, 32, 167. 10.1016/j.pep.2003.09.001

  139. Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    J. Am. Chem. Soc., 2003, 125, 9030. 10.1021/ja035545i

  140. Protein Encapsulated Catalysts

    T.R. Ward

    German Patent Application, 2002, D 102 46 740.4

  141. Mechanistic in situ High-Pressure NMR Studies of Benzene Hydrogenation by Supramolecular Cluster Catalysis with [(h6-C6H6)(h6-C6Me6)2Ru3(m3-O)(m2-OH)(m2-H)2][BF4]

    G. Laurenczy, M. Faure, L. Vieille-Petit, G. Süss-Fink, T.R. Ward

    Adv. Synth. Catal., 2002, 344, 1073. 10.1002/1615-4169(200212)344:10<1073::AID-ADSC1073>3.0.CO;2-J

  142. Supramolecular Cluster Catalysis: A Case Study of Benzene Hydrogenation Catalyzed by a Cationic Triruthenium Cluster under Biphasic Conditions

    G. Süss-Fink, M. Faure, T.R. Ward

    Angew. Chem. Int. Ed., 2002, 41, 99. 10.1002/1521-3773(20020104)41:1<99::AID-ANIE99>3.0.CO;2-E

  143. Design and Synthesis Design and Synthesis of Compartmental Ligands and their Complexes for Catalytic Antibodies

    S. Duclos, H. Stoeckli-Evans, T.R. Ward

    Helv. Chim. Acta, 2001, 84, 3148. 10.1002/1522-2675(20011017)84:10<3148::AID-HLCA3148>3.0.CO;2-W

  144. Cobalt-Catalyzed Solution Phase Combinatorial Synthesis of Pyridines

    C. Brändli, T.R. Ward

    J. Comb. Chem., 2000, 2, 42. 10.1021/cc9900450

  145. An Iron-Based Molecular Redox Switch as a Model for Iron Release from Enterobactin via the Salicylate Binding Mode

    T.R. Ward, A. Lutz, S.L. Parel, J. Ensling, P. Gütlich, P. Buglyó, C. Orvig

    Inorg. Chem., 1999, 38, 5007. 10.1021/ic990225e

  146. Synthesis of a Configurationally Stable Three-Legged Piano-Stool Complex

    B. Therrien, A. König, T.R. Ward

    Organometallics, 1999, 18, 1565. 10.1021/om980949i

  147. From Catalyst Design to Molecular Devices: Theory and Experiments

    T.R. Ward

    1998 A. Werner Prize, Chimia, 1999, 53, 19.

  148. Synthesis of a Configurationally Stable Three-Legged Piano-Stool Complex

    B. Therrien, T.R. Ward

    Angew. Chem., 1999, 111, 418.

    Angew. Chem. Int. Ed., 1999, 38, 405. 10.1002/(SICI)1521-3773(19990201)38:3<405::AID-ANIE405>3.0.CO;2-0

  149. From Catalyst Design to Molecular Devices: Theory and Experiments

    T.R. Ward

    Habilitationsschrift, Universität Bern, 1998.

  150. Application of Transition Metal Catalysts in Organic Synthesis

    by L. Brandsma, S. F. Vasilevsky, H.D. Verkruijsse, Springer, Berlin 1998

    T.R. Ward

    book review in Angew. Chem. Int. Ed., 1998, 37, 2414.

  151. Libraries via Metathesis of Internal Olefins

    C. Brändli, T.R. Ward

    Helv. Chim. Acta, 1998, 81, 1616. 10.1002/(SICI)1522-2675(19980909)81:9<1616::AID-HLCA1616>3.0.CO;2-P

  152. Coordination Properties of Kläui's Tripodal Oxygen Donor towards Zirconium(IV)

    T.R. Ward, S. Duclos, B. Therrien, K. Schenk

    Organometallics, 1998, 17, 2490. 10.1021/om980088d

  153. Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration

    F. Gilardoni, J. Weber, H. Chermette, T.R. Ward

    J. Phys. Chem. A, 1998, 102, 3607. 10.1021/jp980521x

  154. Tripodal Dodecadentate Ligand with Salicylamide and Bipyridine Binding Sites for Iron(II) and Iron(III) Coordination

    A. Lutz, T.R. Ward

    Helv. Chim. Acta, 1998, 81, 207. 10.1002/hlca.19980810203

  155. Synthesis and Reactivity of Tethered η1:η6-Phosphino-Arene-Ruthenium Dichlorides

    B. Therrien, T.R. Ward, M. Pilkinton C. Hoffmann, F. Gilardoni, J. Weber

    Organometallics, 1998, 17, 330. 10.1021/om970735l

  156. Edge-Bridged Tetrahedral Geometry of Five Coordinate d0 Complexes, Relatives of the Bent [MCp2L3] Family: A Theoretical and Structure-Correlation Study

    T.R. Ward, H.B. Bürgi, F. Gilardoni, J. Weber

    J. Am. Chem. Soc., 1997, 119, 11974. 10.1021/ja972230s

  157. Electronic Asymmetry: Theoretical Background, Ligand Design and Applications

    T.R. Ward

    Chimia, 1997, 51, 238.

  158. Geometry of Coordinatively Unsaturated Two-Legged Piano Stool Complexes: A Theoretical Study

    T.R. Ward, O. Schafer, C. Daul, P. Hofmann

    Organometallics, 1997, 16, 3207. 10.1021/om9700369

  159. Synthesis of Salicylamide- and Bipyridine Containing Ligands for Iron(II) and Iron(III) Coordination

    A. Lutz, T.R. Ward, M. Albrecht

    Tetrahedron, 1996, 52, 12197. 10.1016/0040-4020(96)00724-7

  160. Regioselectivity of a Nucleophilic Attack on [Pd(allyl)(phosphine)(imine)] Complexes: A Theoretical Study

    T.R. Ward

    Organometallics, 1996, 15, 2836. 10.1021/om960158l

  161. 7-(2'-Deoxy-α-D-ribofuranosyl)-hypoxanthine

    J. Marfurt, E. Stulz, H.U. Trafelet, A. Zingg, C. Leumann, M. Hazenkamp, R. Judd, S. Schenker, G. Strouse, T.R. Ward, M. Förtsch, J. Hauser, H.B. Bürgi

    Acta Cryst., 1996, C52, 713. 10.1107/S0108270195012662

  162. Migratory Aptitude of the Zr-C Functionalities Bonded to a Macrocyclic Structure: Thermally- and Solvent Assisted Intra- and Inter-Molecular Migrations in Dialkyl(dibenzotetramethyltetraaza-annulene) Zirconium IV

    L. Giannini, E. Solari, S. De Angelis, T.R. Ward, C. Floriani, A. Chiesi-Villa, C. Rizzoli

    J. Am. Chem. Soc., 1995, 117, 5801. 10.1021/ja00126a019

  163. Adhesion of Rhodium Palladium and Platinum to Alumina, and Nitric Oxide Reactions on the Resulting Surfaces: Model Calculations

    T.R. Ward, P. Alemany, R. Hoffmann

    in Environmental Catalysis, ACS Symposium Series 552, J. N. Armor Ed., Washington D. C., 1993, 140. 10.1021/bk-1994-0552.ch011

  164. Adhesion and NO Reduction Properties of Rhodium, Palladium and Platinum Supported on Alumina: A Theoretical Analysis

    T.R. Ward, P. Alemany, R. Hoffmann

    J. Phys Chem., 1993, 97, 7691. 10.1021/j100131a044

  165. Coupling Nitrosyls as the First Step in the Reduction of NO on Metal Surfaces. The Special Role of Rhodium

    T.R. Ward, R. Hoffmann, M. Shelef

    Surf. Sci., 1993, 289, 85. 10.1016/0039-6028(93)90890-V

  166. Variations in C3 Symmetry: Coordination Chemistry and Catalytic Properties of fac-{Rh(TRIPOD)}-Complexes

    F. Karrer, A. Rindlisbacher, H.P. Buser, L.M. Venanzi, G.M. Ramos Tombo, T.R. Ward

    PhD Thesis Nr. 9513, ETH Zürich, 1991.

  167. Preparation of (2R,4S)-2-Ethyl-4-[(4-Phenoxy-Phenoxy)-Methyl]-Dioxolane as a Pesticide

    F. Karrer, A. Rindlisbacher, H.P. Buser, L.M. Venanzi, G.M. Ramos Tombo, T.R. Ward

    Eur. Pat. Appl., EP 501, 912.

  168. The Solution Structure of [(PPP*)RhH2(AuPPh3)3][PF6]2 Deduced by One- and Two-Dimensional 1H{31P} and 1H{103Rh} Double Resonance Techniques

    D. Imhof, H. Rüegger, L.M. Venanzi, T.R. Ward

    Magn. Reson. in Chem., 1991, 29, 73. 10.1002/mrc.1260291314

  169. Synthesis and X-Ray Crystal Structure of an Optically Pure Tripodal C3 Symmetric Tritertiary Phosphine Bearing Chirality on Phosphorus

    T.R. Ward, L.M. Venanzi, A. Albinati, F. Lianza, T. Gerfin, V. Gramlich, G.M. Ramos Tombo

    Helv. Chim. Acta, 1991, 74, 983. 10.1002/chin.199142248

  170. Rhodium Phosphine Complexes as Acetalization Catalysts

    J. Ott, G.M. Ramos Tombo, B. Schmid, L.M. Venanzi, G. Wang, T.R. Ward

    New J. Chem., 1990, 14, 495. 10.1002/chin.199108075

  171. A Versatile Rhodium Catalyst for Acetalization Reactions under Mild Conditions

    J. Ott, G.M. Ramos Tombo, B. Schmid, L.M. Venanzi, G. Wang, T.R. Ward

    Tetrahedron Lett., 1989, 30, 6151. 10.1002/hlca.19880710116

  172. Complexes with a Pincers. 2,6- Diphenylpyridine as Twofold-Deprotonated (C^N^C) Terdentate Ligands in C,C-trans-, and as Mono-Deprotonated (C^N) Chelate Ligand in Chiral C,C-cis-Complexes of Platinum(II) and Palladium(II)

    C. Cornioley-Deuschel, T.R. Ward, A. von Zelewsky

    Helv. Chim. Acta, 1988, 71, 130. 10.1002/hlca.19880710116